Основы нейронной теории. Типы нейронов

Функцией нервной системы является

1)управление деятельностью различных систем составляющих целостный организм,

2)координирова­ние протекающих в нем процессов,

3)установление взаимосвязей организма с внешней средой.

Деятельность нервной системы носит реф­лекторный характер. Рефлекс (лат. reflexus - отраженный) - это ответ­ная реакция организма на любое воздействие. Это может быть внешнее или внутрен­нее воздействие (со стороны внешней среды или со стороны собственного организма).

Структурно-функциональной единицей нервной системы является нейрон (нервная клетка, нейроцит). Нейрон состоит из двух частей - тела и отростков . Отростки у нейрона в свою очередь двух видов – дендриты и аксоны . Отростки, по которым нервный импульс приносится к телу нервной клетки, полу­чили название дендритов . Отросток, по которому от тела нейрона нервный импульс направляется к другой нерв­ной клетке или к рабочей ткани, на­зывают аксоном . Нерв­ ная клетка способна пропускать нервный импульс только в одном направле­ нии - от дендрита через тело клетки к аксону.

Нейроны в нервной системе, обра­зуют цепи, по которым передаются (движутся) нервные импульсы. Пере­дача нервного импульса от одного нейрона к другому происходит в местах их контактов и обеспечивается особого рода анатомическими структурами, получив­шими название межнейронных синап­ сов .

В нервной цепочке различные ней­роны выполняют разные функции. В свя­зи с этим выделяют три следую­щих основных типа нейронов:

1. чувствительный (афферентный) нейрон .

2. вставочный нейрон.

3. эффекторный (эфферентный) нейрон .

Чувствительные, (рецепторные, или афферентные) нейроны . Основные характеристики чувствительных нейронов:

а) т ела чувствительных нейронов лежат всегда узлах (спиномозговых), вне голов­ного или спинного мозга;

б) чувствительный нейрон имеет два отростка – один дендрит и один аксон;

в) дендрит чувствительного нейрона следует на периферию к тому или иному ор­гану и заканчивается там чувствительным окончанием - рецептором. Рецептор это орган, который способен преобразовать энергию внешнего воз­действия (раздражения) в нервный импульс;

г) аксон чувствительного нейрона направля­ется в центральную нервную систему, в спинной мозг или в стволовую часть головного мозга, в составе задних корешков спинномозговых нер­вов или соответствующих черепных нервов.

Рецептор это орган, который способен преобразовать энергию внешнего воз­действия (раздражения) в нервный импульс. Он расположен на конце дендрита чувствительного нейрона

Различают следующие виды рецеп­ торов в зависимости от локализации:

1) Экстероцепторы воспринимают раздражение из внешней среды. Они расположены в наружных покровах тела, в коже и слизистых оболочках, в органах чувств;

2) Интероцепторы получают раздра­жение от внутренней среды организма, они расположены во внутренних органах;

3) Проприоцепторы воспринимают раздражения от опорно-двигательного аппарата (в мышцах, сухожилиях, связ­ках, фасциях, суставных капсулах.

Функция чувствительного нейрона – восприятие импульса от рецептора и передача его в центральную нервную систему. Это явление И. П. Павлов от­носил к началу процесса анализа.

Вставочный , (ас­социативный, замыкательный, или кондукторный, ней­рон) осуществляет передачу возбужде­ния с чувствительного (афферентного) нейрона на эфферентные. Замыкательные (вставочные) нейроны лежат в пределах центральной нерв­ной системы.

Эффекторный, (эфферентный) нейрон . Выделяют два вида эфферентных нейронов. Это дви гательный нейрон, и секреторный нейрон. Основные свойства двигательных нейронов:

    Тела двигательных нейронов находятся в ЦНС, в передних рогах спинного мозга.

    Аксоны двигательных нейронов направляются в составе нервных волокон к рабочим органам (поперечно-полосатым мышцам опорно-двигательного аппарата).

Основные свойства секреторных нейронов:

    тела секреторных нейронов расположены в симпатических и парасимпа­тических узлах;

    аксоны секреторных нейронов направляются к внутренним органам.

Главный принцип работы нервной системы – принцип рефлекторного ответа на раздражение.

В соответствии с этим в основе строения нервной системы лежит рефлекторная дуга. Рефлекторная дуга представляет собой цепь нервных клеток, по которым нерв­ный импульс движется от места своего возникновения (от рецептора) к рабо­чему органу (к эффектору).

Простейшая рефлекторная дуга (рис. 184) состоит только из двух нейронов - чувствительного и двигательного (афферентного и эффекторного). Тело первого нейрона (чувствительного), находится в спинномозговом узле. Перифе­рический отросток этой клетки закан­чивается рецептором, воспринимаю­щим разд­ражение. Рецептор превращает это раздражение в нервный им­пульс. Нервный импульс по дендриту достигает тела нервной клетки, а затем по аксону направляется в спинной мозг.

В сером веществе спинного мозга этот отросток чувствитель­ной клетки образует синапс с телом второго нейрона (двигательного). В межнейронном синапсе происходит пе­редача нервного возбуждения с чув­ствительного (афферентного) нейро­на на двигательный (эфферентный) нейрон. Отросток двигательного нейрона выходит из спинного мозга в составе передних корешков спинномозговых нервов и направля­ется к рабочему органу, управляя работой мышцы.

Как правило, рефлекторная дуга состоит не из двух нейронов, а устрое­на гораздо сложнее. Между двумя нейронами - рецепторным (афферент­ным) и эффекторным (эфферентным) - имеется один или несколько вставочных (замыкательных) нейронов. В этом случае возбуждение от рецепторного нейрона по его центральному отрост­ку передается не прямо эффекторной нервной клетке, а одному или несколь­ким вставочным нейронам. Роль вста­вочных нейронов в спинном мозге выполняют клетки, лежащие в сером веществе задних столбов. Раздражение даже самого минимального числа рецепторов может передаваться не только к какому то определенному сегменту спинного моз­га, но и распространяться на клетки нескольких соседних сегментов. В ре­зультате этого ответная реакция пред­ставляет собой сокращение не одной мышцы и даже не одной группы мышц, а сразу нескольких групп. Так, в ответ на раздражение возникает сложное, рефлекторное движение. Это и есть одна из ответных реакций организма (рефлекс) в ответ раздражение.

Огромная заслуга И. П. Павлова состоит в том, что он распространил учение о рефлексе на всю нервную систему, начиная от низших отделов и кончая самыми высшими ее отделами, и эксперимен­тально доказал рефлекторную природу всех без исключения форм жизнедея­тельности организма. По мнению И. П. Павлова, простая форма дея­ тельности нервной системы , должна обозначаться как безусловный реф­ лекс. Безусловный рефлекс является постоянной формой деятельности нервной системы, прирожденной, с характерными особенностями для каждого вида.

Кроме этого, существуют приобре­таемые в течение индивидуальной жизни временные связи с окружающей средой. Возможность приобретения временных связей позволяет организму устанавливать многообразнейшие и сложнейшие отношения с внешней средой. Эту форму рефлекторной дея­тельности И. П. Павлов назвал условнорефлекторной (в отличие от безус-ловнорефлекторной). Местом замы­кания условных рефлексов является кора большого мозга. Головной мозг и его кора - основа высшей нервной деятельности.

Нервную систему человека условно подразделяют по топографическому принципу на две части - центральную и перифе­рическую.

К центральной нервной системе от­носят спинной мозг и головной мозг . Спинной мозг и головной мозг состоят из серого и белого вещества.

Серое вещество спинного и головного мозга - это скопление тел нервных клеток. Белое вещество - это нервные волокна, отростки нервных клеток. Нервные волокна образуют проводя­щие пути спинного и головного мозга и связывают различные отделы цент­ральной нервной системы и различ­ные ядра (нервные центры) между собой.

Периферическую нервную систему составляют корешки, нервы, их ветви, сплетения и узлы, лежащие в различных отделах тела человека.

По другой, анатомо-функциональ­ной, классификации единую нервную систему также условно подразделяют на две части: I) соматическую и 2) ве­ гетативную .

Сомати­ ческая нервная система обеспечивает иннервацию главным образом тела - сомы, а именно кожи и опорно-двигательного аппарата.

Вегетативная (автономная) нервная система иннервирует все внутренние органы и регу­лирует обменные процессы во всех органах и тканях.

Вегетативная нервная система в свою очередь подразделяется на две части: парасимпатическую и симпатическую . В каждой из этих частей, как и в соматической нервной систе­ме, выделяют центральный и перифе­рический отделы.

Такое деление нервной системы, несмотря на его условность, сложи­лось традиционно и представляется достаточно удобным для изучения нервной системы в целом и ее от­дельных частей. В связи с этим в дальнейшем мы также будем в изло­жении материала придерживаться этой классификации.

Способность клеток реагировать на раздражители внешнего мира - основной критерий живого организма. Структурные элементы нервной ткани - нейроны млекопитающих и человека - способны трансформировать раздражители (свет, запах, звуковые волны) в процесс возбуждения. Его конечный результат - адекватная реакция организма в ответ на различные воздействия внешней среды. В данной статье мы изучим, какую функцию выполняют нейроны головного мозга и периферические отделы нервной системы, а также рассмотрим классификацию нейронов в связи с особенностями их функционирования в живых организмах.

Образование нервной ткани

Прежде чем изучать функции нейрона, давайте разберемся, каким образом формируются клетки-нейроциты. На стадии нейрулы у зародыша закладывается нервная трубка. Она формируется из эктодермального листка, имеющего утолщение - нервной пластинки. Расширенный конец трубки в дальнейшем сформирует пять частей в виде мозговых пузырей. Из них образуются Основная часть нервной трубки в процессе зародышевого развития сформировывает от которого отходит 31 пара нервов.

Нейроны головного мозга объединяются, образуя ядра. Из них выходит 12 пар черепно-мозговых нервов. В организме человека нервная система дифференцируется на центральный отдел - головной и спинной мозг, состоящий из клеток-нейроцитов, и опорную ткань - нейроглию. Периферический отдел состоит из соматической и вегетативной части. Их нервные окончания иннервируют все органы и ткани организма.

Нейроны - структурные единицы нервной системы

Они имеют различные размеры, форму и свойства. Функции нейрона многообразны: участие в образовании рефлекторных дуг, восприятие раздражения из внешней среды, передача возникшего возбуждения к другим клеткам. От нейрона отходит несколько отростков. Длинный - аксон, короткие ветвятся и называются дендритами.

Цитологические исследования выявили в теле нервной клетки ядро с одним - двумя ядрышками, хорошо сформированную эндоплазматическую сеть, множество митохондрий и мощный белоксинтезирующий аппарат. Он представлен рибосомами и молекулами РНК и иРНК. Эти вещества образуют специфическую структуру нейроцитов - субстанцию Ниссля. Особенность нервных клеток - большое количество отростков способствует тому, что основная функция нейрона - передача нервных импульсов. Она обеспечивается как дендритами, так и аксоном. Первые воспринимают сигналы и передают их в тело нейроцита, а аксон - единственный очень длинный отросток, проводит возбуждение к другим нервным клеткам.Продолжая находить ответ на вопрос: какую функцию выполняют нейроны обратимся к строению такого вещества, как нейроглия.

Структуры нервной ткани

Нейроциты окружены особым веществом, которому присущи опорные и защитные свойства. Для него также характерная способность к делению. Это соединение называется нейроглия.

Эта структура находится в тесной связи с нервными клетками. Так как главные функции нейрона - это генерация и проведение нервных импульсов, то глиальные клетки оказываются под воздействием процесса возбуждения и изменяют свои электрические характеристики. Кроме трофической и защитной функций, глия обеспечивает метаболические реакции в нейроцитах и способствует пластичность нервной ткани.

Механизм проведения возбуждения в нейронах

Каждая нервная клетка образует несколько тысяч контактов с другими нейроцитами. Электрические импульсы, являющиеся основой процессов возбуждения, передаются от тела нейрона по аксону, а он контактирует с другими структурными элементами нервной ткани или входит непосредственно в рабочий орган, например, в мышцу. Чтобы установить, какую функцию выполняют нейроны, нужно изучить механизм передачи возбуждения. Он осуществляется аксонами. В двигательных нервах они покрыты и называются мякотными. В находятся безмиелиновые отростки. По ним возбуждение должно поступить в соседний нейроцит.

Что такое синапс

Место контакта двух клеток называется синапсом. Передача возбуждения в нем происходит или с помощью химических веществ - медиаторов, или путем прохождения ионов из одного нейрона в другой, то есть электрическими импульсами.

Благодаря образованию синапсов нейроны создают сетчатую структуру стволовой части головного и отделов спинного мозга. Она называется начинается из нижней части продолговатого мозга и захватывает ядра мозгового ствола, или нейроны головного мозга. Сетчатая структура поддерживает активное состояние коры больших полушарий и руководит рефлекторными актами спинного мозга.

Искусственный интеллект

Идея о синаптических связях между нейронами центральной нервной системы и изучение функций ретикулярной информации в настоящее время воплощена наукой в виде искусственной нейронной сети. В ней выходы одной искусственной нервной клетки соединены со входами другой специальными связями, дублирующими своими функциями реальные синапсы. Функция активации нейрона искусственного нейрокомпьютера - это суммация всех входных сигналов, поступающих в искусственную нервную клетку, преобразованная в нелинейную функцию от линейной составляющей. Её еще называют функцией срабатывания (передаточной). При создании искусственного интеллекта наибольшее распространение получили линейная, полулинейная и шаговая активационные функции нейрона.

Афферентные нейроциты

Они еще называются чувствительными и имеют короткие отростки, которые входят в клетки кожи и всех внутренних органов (рецепторы). Воспринимая раздражение внешней среды, рецепторы трансформируют их в процесс возбуждения. В зависимости от типа раздражителя, нервные окончания делятся на: терморецепторы, механорецепторы, ноцицепторы. Таким образом, функции чувствительного нейрона - это восприятие раздражителей, их различение, генерация возбуждения и передача его в центральную нервную систему. Сенсорные нейроны входят в задние рога спинного мозга. Их тела располагаются в узлах (ганглиях), находящихся вне центральной нервной системы. Так образуются ганглии черепно-мозговых и спинномозговых нервов. Афферентные нейроны имеют большое количество дендритов, вместе с аксоном и телом они являются обязательным компонентом всех рефлекторных дуг. Поэтому функции заключаются как в передаче процесса возбуждения в головной и спинной мозг, так и в участии в образовании рефлексов.

Особенности интернейрона

Продолжая изучать свойства структурных элементов нервной ткани, выясним, какую функцию выполняют вставочные нейроны. Этот вид нервных клеток принимает биоэлектрические импульсы от сенсорного нейроцита и передает их:

а) другим интернейронами;

б) двигательным нейроцитам.

Большинство интернейронов имеют аксоны, концевые участки которых - терминали, связаны с нейроцитами одного центра.

Вставочный нейрон, функции которого - интеграция возбуждения и распространения его далее в отделы центральной нервной системы, являются обязательным компонентом большинства безусловно-рефлекторных и условно-рефлекторных нервных дуг. Возбуждающие интернейроны способствуют передаче сигнала между функциональными группами нейроцитов. Тормозные вставочные нервные клетки получают возбуждение из собственного центра по обратным связям. Это способствует тому, что вставочный нейрон, функции которого - передача и длительное сохранение нервных импульсов, обеспечивает активацию сенсорных спинномозговых нервов.

Функция двигательного нейрона

Мотонейрон является заключительной структурной единицей рефлекторной дуги. Он имеет большое тело, заключенное в передние рога спинного мозга. Те нервные клетки, которые иннервируют имеют названия этих двигательных элементов. Другие эфферентные нейроциты входят в секретирующие клетки желез и вызывают выделение соответствующих веществ: секретов, гормонов. В непроизвольных, то есть безусловно-рефлекторных актах (глотание, слюноотделение, дефекация) эфферентные нейроны отходят от спинного мозга или от стволовой части головного мозга. Для выполнения сложных действий и движений организм использует два вида центробежных нейроцитов: центральный двигательный и периферический двигательный. Тело центрального мотонейрона находится в коре головного мозга, вблизи от роландовой борозды.

Тела периферических двигательных нейроцитов, иннервирующих мышцы конечностей, туловища, шеи, расположены в передних рогах спинного мозга, а их длинные отростки - аксоны - выходят из передних корешков. Они образуют моторные волокна 31 пары спинномозговых нервов. Периферические двигательные нейроциты, иннервирующие мышцы лица, глотки, гортани, языка располагаются в ядрах блуждающего, подъязычного и языкоглоточного черепно-мозговых нервов. Следовательно, главная функция двигательного нейрона - беспрепятственное проведение возбуждения к мышцам, секретирующим клеткам и другим рабочим органам.

Обмен веществ в нейроцитах

Главные функции нейрона - образование биоэлектрического и передача его другим нервным клеткам, мышцам, секретирующим клеткам - обусловлены особенностями строения нейроцита, а также специфическими реакциями обмена веществ. Цитологические исследования доказали, что нейроны содержат большое количество митохондрий, синтезирующих молекулы АТФ, развитый гранулярный ретикулум со множеством рибосомных частиц. Они активно синтезируют клеточные белки. Мембрана нервной клетки и его отростков - аксона и дендритов выполняет функцию избирательного транспорта молекул и ионов. Метаболические реакции в нейроцитах протекают с участием разнообразных ферментов и характеризуются высокой интенсивностью.

Передача возбуждения в синапсах

Рассматривая механизм проведения возбуждения в нейронах, мы ознакомились с синапсами - образованиями, возникающими в месте контакта двух нейроцитов. Возбуждения в первой нервной клетке вызывает образование в коллатералях её аксона молекул химических веществ - медиаторов. К ним относятся аминокислоты, ацетилхолин, норадреналин. Выделяясь из пузырьков синоптических окончаний в синоптическою щель, он может влиять как на собственную постсинаптическую мембрану, так и воздействовать на оболочки соседних нейронов.

Молекулы нейромедиаторов служат раздражителем для другой нервной клетки, вызывая в её мембране изменения зарядов - потенциал действия. Таким образом, возбуждение быстро распространяется по нервным волокнам и достигает отделов центральной нервной системы или же поступает в мышцы и железы, вызывая их адекватное действие.

Пластичность нейронов

Учеными установлено, что в процессе эмбриогенеза, а именно в стадии нейруляции, из эктодермы развивается очень большое количество первичных нейронов. Около 65% из них погибают еще до момента рождения человека. В течение онтогенеза некоторые клетки головного мозга продолжают элиминировать. Это естественный запрограммированный процесс. Нейроциты, в отличие от эпителиальных или соединительных клеток, неспособны к делению и регенерации, так как гены, отвечающие за эти процессы, инактивированы в хромосомах человека. Тем не менее мозг и умственная работоспособность могут сохраняться многие годы, существенно не снижаясь. Это объясняется тем, что функции нейрона, утраченные в процессе онтогенеза, берут на себя другие нервные клетки. Им приходится усиливать свой обмен веществ и создавать новые дополнительные нервные связи, компенсирующие утраченные функции. Это явление называется пластичностью нейроцитов.

Что отражается в нейронах

В конце ХХ века группа итальянских нейрофизиологов установила интересный факт: в нервных клетках возможно зеркальное отражение сознания. Это значит, что в коре головного мозга формируется фантом сознания людей, с которыми мы общаемся. Входящие в зеркальную систему нейроны выполняют функции резонаторов мыслительной активности окружающих людей. Поэтому человек способен предугадывать намерения собеседника. Структура таких нейроцитов также обеспечивает особый психологический феномен, называемый эмпатией. Он характеризуется способностью проникать в мир эмоций другого человека и сопереживать его чувствам.

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в том числе в соответствии с их местом в рефлекторной дуге на три типа):

1. афферентные (чувствительные, сенсорные),

2 эфферентные (двигательные соматические, двигательные вегетативные)

3 ассоциативные, или вставочные

Афферентные нейроны (чувствительные, рецепторные, сенсорные центростремительные):

Их тела располагаются не в ЦНС, а в спинномозговых узлах или чувствительных узлах черепно-мозговых нервов.

Часть афферентных нейронов, расположенных в коре, принято делить в зависимости от чувствительности к действию раздражителейна

1) моносенсорные,

2) бисенсорные

3) полисенсорные.

Эфферентные нейроны (двигательные, моторные, секреторные, центробежные, сердечные, сосудодвигательные и пр.) предназначены для передачи информации от ЦНС на периферию, к рабочим органам.

Вставочные нейроны (интернейроны, контактные, ассоциативные, коммуникативные, объединяющие, замыкательные, проводниковые, кондукторные). Они осуществляют передачу нервного импульса с афферентного (чувствительного) нейрона на эфферентный (двигательный) нейрон

Среди вставочных нейронов выделяют также

1) командные,

2) пейсмекерные («водители ритма»)

3) гормонпродуцирующие (например, кортиколиберинпродуцирующие)

4)потребностно-мотивационные,

5) гностические

6)другие виды нейронов

Биохимическая классификация нейронов (основана на химической природе нейромедиаторов)

1) холинергические,

2) адренергические,

3) серотонинергические,

4) дофаминергические

5) ГАМК-ергические,

6) глицинергичесмкие,

7) глутаматергические,

8) пуринергические

9) пептидергические

10) Другие виды нейронов

Основная функция нейрона - принимать, хранить, перерабатывать и передавать информацию на другие нервные клетки, органы или мышцы. По функциям нейроны подразделяются на:

Афферентные (рецепторные, чувствительные), передающие информацию от органов чувств в центральные отделы нервной системы. Тела афферентных нейронов обычно лежат вне ЦНС, в вынесенных на периферию сенсорных органах, узлах ( ганглиях) черепно-мозговых илиспинномозговых нервов;

Эфферентные (двигательные, моторные) , посылающие импульсы к различным органам и тканям,

Вставочные (замыкательные, кондукторные, промежуточные) , служащие для переработки и переключения импульсов. ЦНС на 90% состоит из вставочных нейронов.

Вставочные (замыкательные, кондукторные, промежуточные) нейроны

Нейроны после дифференцировки утрачивают способность к пролиферации и становятся высокоспециализированными неделящимися клетками. Основная функция нейрона - принимать, хранить, перерабатывать и передавать информацию на другие нервные клетки, органы или мышцы. По функциям нейроны подразделяются на:

Афферентные (рецепторные, чувствительные) , передающие информацию от органов чувств в центральные отделы нервной системы;

Эфферентные (двигательные, моторные) , посылающие импульсы к различным органам и тканям и

Вставочные (замыкательные, кондукторные, промежуточные), служащие для переработки и переключения импульсов. Один или несколько вставочных нейронов могут находиться междуафферентным и эфферентным нейронами. Вставочные нейроны наиболее многочисленны и расположены во всех отделах спинного и головного мозга.

ЦНС на 90% состоит из вставочных нейронов.

В задних рогах залегают ядра, образованные мелкими вставочными нейронами, к которым в составе задних, или чувствительных, корешков направляются аксоны клеток, расположенных в спинномозговых узлах. Отростки вставочных нейронов осуществляют связь с нервными центрами головного мозга, а также с несколькими соседними сегментами, с нейронами, расположенными в передних рогах своего сегмента, выше и ниже лежащих сегментов, т, е. связывают афферентные нейроны спинномозговых узлов с нейронами передних рогов.

Эфферентные нейроны

Эфферентные нейроны нервной системы - это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эфферентные нейроны двигательной зоны коры большого мозга - пирамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т. е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

Эфферентные нейроны разных отделов коры больших полушарий связывают между собой эти отделы по аркуатным связям. Такие связи обеспечивают внутриполушарные и межполушарные отношения, формирующие функциональное состояние мозга в динамике обучения, утомления, при распознавании образов и т. д. Все нисходящие пути спинного мозга (пирамидный, руброспинальный, ретикулоспинальный и т. д.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы.

Нейроны автономной нервной системы, например ядер блуждающего нерва, боковых рогов спинного мозга, также относятся к эфферентным.

Нейроглия, или глия, - совокупность клеточных элементов нервной ткани, образованная специализированными клетками раз личной формы. Она обнаружена Р. Вирховым и названа им нейроглией, что означает «нервный клей». Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше, чем нервные; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Различают несколько видов нейроглии, каждая из которых образована клетками определенного типа: астроциты, олигодендроциты, микроглиоциты) (табл. 2.3).

Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Размеры астроцитов 7-25 мкм. Астроциты располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохондрии. Считают, что астроциты служат опорой нейронов, обеспечивают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полностью покрывая их. В итоге между нейронами и капиллярами рас полагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию.

Олигодендроциты - клетки, имеющие малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендроцитов больше, чем в коре. Олигодендроциты участвуют в миелинизации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.

Микроглия представлена самыми мелкими многоотростчатыми клетками глии, относящимися к блуждающим клеткам. Источником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.

Одной из особенностей глиальных клеток является их способность к изменению размеров. Это свойство было обнаружено в культуре ткани при помощи киносъемки. Изменение размера глиальных клеток носит ритмический характер: фаза сокращения составляет 90 с, расслабления - 240 с, т. е. это очень медленный процесс. Частота «пульсации» варьирует от 2 до 20 в час. «Пульсация» происходит в виде ритмического уменьшения объема клетки. Отростки клетки набухают, но не укорачиваются. «Пульсация» усиливается при электрической стимуляции глии; латентный период в этом случае весьма большой - около 4 мин.

Глиальная активность изменяется под влиянием различных биологически активных веществ: серотонин вызывает уменьшение «пульсации» олигодендроглиоцитов, норадреналин - усиление. Физиологическая роль «пульсации» глиальных клеток мало изучена, но считают, что она проталкивает аксоплазму нейрона и влияет на ток жидкости в межклеточном пространстве.

Нормальные физиологические процессы в нервной системе во многом зависят от степени миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается олигодендроцитами, а в периферической - леммоцитами (шванновские клетки).

Глиальные клетки не обладают импульсной активностью, подобно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал, который отличается большой инертностью. Изменения мембранного потенциала медленны, зависят от активности нервной системы, обусловлены не синаптическими влияниями, а изменениями химического состава межклеточной среды. Мембранный потенциал нейроглии равен 70- 90 мВ.

Глиальные клетки способны к передаче возбуждения, распространение которого от одной клетки к другой идет с декрементом. При расстоянии между раздражающим и регистрирующим электродами 50 мкм распространение возбуждения достигает точки регистрации за 30-60 мс. Распространению возбуждения между глиальными клетками способствуют специальные щелевые контакты их мембран. Эти контакты обладают пониженным сопротивлением и создают условия для электротонического распространения тока от одной глиальной клетки к другой.

Вследствие того, что нейроглия очень тесно контактирует с нейронами, процессы возбуждения нервных элементов сказываются на электрических явлениях глиальных элементов. Это влияние может быть обусловлено тем, что мембранный потенциал нейроглии зависит от концентрации ионов К+ в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+ в нейрон усиливается, что значительно изменяет его концентрацию вокруг нейроглии и приводит к деполяризации ее клеточных мембран.

Афферентные нейроны, их функции

Афферентные нейроны - нейроны, воспринимающие информацию. Как правило, афферентные нейроны имеют большую разветвленную сеть. Это характерно для всех уровней ЦНС. В зад них рогах спинного мозга афферентными являются чувствительные нейроны малых размеров с большим числом дендритных отростков, в то время как в передних рогах спинного мозга эфферентные нейроны имеют тело большого размера, более грубые, менее ветвящиеся отростки. Эти различия нарастают по мере изменения уровня ЦНС к продолговатому, среднему, промежуточному, конечному мозгу. Наибольшие различия афферентных и эфферентных нейронов отмечаются в коре большого мозга.

Афферентный нейрон

Афферентные нейроны (чувствительные нейроны, рецепторные нейроны, сенсорные нейроны) – нейроны способные воспринимать информацию из внешнего мира и внутренних органов, генерировать нервный импульс и передавать его в центральную нервную систему. в связке со вставочным иэфферентным нейронами образует рефлекторную дугу.

Афферентный нейрон имеет псевдоуниполярную форму. Т.е. его аксон и дендрит выходят из одного полюса клетки. От тела клетки отходит один отросток, который раздваивается на аксон и дендрит. Дендрит своими отростками образует рецептор, либо связывается с рецепторными образованиями, а аксон входит в спинной мозг.

Нейроны афферентные (сенсорные)

Афферентные или сенсорные нейроны - нейроны, передающие импульсы в центральную нервную систему.

Афферентные нейроны (лат. afferens - приносящий) имеют, как правило, два вида отростков. Дендрит следует на периферию и заканчивается чувствительными окончаниями - рецепторами, которые воспринимают внешнее раздражение и трансформируют его энергию в энергию нервного импульса; второй - одиночный аксон направляется в головной или спинной мозг.

Вставочный нейрон

Вставочные нейроны (промежуточные нейроны, интернейроны, ассоциативные нейроны) бывают возбуждающими или тормозными. Эти нейроны занимаются тем, что принимают информацию от Афферентных нейронов, обрабатывают её и передают на Эфферентные нейроны или другие вставочные. Основная масса нейронов Центральной Нервной Системы является вставочными нейронами. Некоторые вставочные нейроны участвуют в процессах торможения.

Как известно, нейроны имеют свойство организовываться в группы (нейронные центры) – это их способ существования и взаимодействия. Для того, чтобы вставочному нейрону обеспечить свою интеграцию в группу нейронов, их аксоны (передающие отростки) должны заканчиваться на нейронах своего же центра. Что, в общем, и наблюдается.

Вставочные нейроны получают информацию от нейронов соседних центров и передают её на нейроны своего центра, а другие вставочные нейроны получают информацию от нейронов своего центра и передают её нейронам своего же центра. Таким образом, нейроны организуют ревербирующие (замкнутые) сети, позволяющие длительное время сохранять информацию в своем центре.

Нейрон (нервная клетка) - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов. По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы. Нейрон, или нервная клетка - это функциональная единица нервной системы. Нейроны восприимчивы к раздражению, то есть способны возбуждаться и передавать электрические импульсы от рецепторов к эффекторам. По направлению передачи импульса различают афферентные нейроны (сенсорные нейроны), эфферентные нейроны (двигательные нейроны) и вставочные нейроны. Каждый нейрон состоит из сомы (клетки диаметром от 3 до 100 мкм, содержащей ядро и другие клеточные органеллы, погруженные в цитоплазму) и отростков - аксонов и дендритов. На основании числа и расположения отростков нейроны делятся на униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные нейроны .

Основными функциями нервной клетки является восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция)

Особенности осуществления этих функций позволяют разделить все нейроны ЦНС на две большие группы:

1) Клетки, передающие информацию на большие расстояния (из одного отдела ЦНС в другой, от периферии к центру, от центра к исполнительному органу). Это крупные афферентные и эфферентные нейроны, имеющие на своём теле и отростках большое количество синапсов, как тормозящих, так и возбуждающих, и способные к сложным процессам переработки поступающих через них влияний.

2) Клетки, обеспечивающие межнейроальные связи в пределах органических нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.). Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синоптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.

Воспринимающая функция нейрона. Все раздражения, поступающие в нервную систему, передаются на нейрон через определённые участки его мембраны, находящиеся в области синаптических контактов. 6.2 Интегративная функция нейрона. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки.

Эффекторная функция нейрона. С появлением ПД, который в отличие от местных изменений мембранного потенциала (ВПСП и ТПСП) является распространяющимся процессом, нервный импульс начинает проводиться от тела нервной клетки вдоль по аксону к другой нервной клетке или рабочему органу, т.е. осуществляется эффекторная функция нейрона.

    Синапсы в ЦНС.

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку. Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы).

2. По развитию в онтогенезе: стабильные и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту : тормозные и возбуждающие.

4. По механизму передачи сигнала : электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора – холинергические, адренергическис, дофаминергические

Электрические синапсы . В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм.

    Рефлекторная дуга. Классификация рефлексов.

Рефлекс - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы.Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни. Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга. Их можно классифицировать на различные группы по ряду признаков.

1. По биологическому значению

А.)пищевые

Б.)оборонительные

В.)половые

Г.)ориентировочные

Д.)позно-тонические (рефлексы положения тела в пространстве)

Е.)локомоторные (рефлексы передвижения тела в пространстве)

2. По расположению рецепторов , раздражение которых вызывает данный рефлекторный акт

А.)экстерорецептивный рефлекс - раздражение рецепторов внешней поверхноcти тела

Б.)висцеро- или интерорецептивный рефлекс - возникающий при раздражении рецепторов внутренних органов и сосудов

В.)проприорецептивный (миотатический) рефлекс - раздражение рецепторов скелетных мышц, суставов, сухожилий

3. По месту расположения нейронов, участвующих в рефлексе

А.)спинальные рефлексы - нейроны расположены в спинном мозге

Б.)бульбарные рефлексы - осуществляемые при обязательном участии нейронов продолговатого мозга

В.)мезэнцефальные рефлексы - осуществляемые при участии нейронов среднего мозга

Г.)диэнцефальные рефлексы - участвуют нейроны промежуточного мозга

Д.)кортикальные рефлексы - осуществляемые при участии нейронов коры больших полушарий головного мозга

Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)

Соматической нервной системы, иннервирующие скелетную иускулатуру

Вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.

Рефлекторная дуга состоит из пяти отделов:

1.Рецепторов, воспринимающих раздражение и отвечающих на него возбуждением. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).

2.Чувствительного (центростремительного, афферентного) нервного волокна, передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.

3.Нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре

происходит синаптическое соединение чувствительного и двигательного нейрона.

1.Двигательного (центробежного, эфферентного) нервного волокна, несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.

2.Эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

    Понятие о нервном центре.

Нервный центр - совокупность нервных клеток, более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса, в регуляции той или иной функции организма или одной из сторон этой функции. В простейших случаях нервный центр состоит из нескольких нейронов, образующих обособленный узел (ганглий).

В каждый Н. ц. по входным каналам - соответствующим нервным волокнам - поступает в виде импульсов нервных информация от органов чувств или от др. Н. ц. Эта информация перерабатывается нейронами Н. ц., отростки (Аксоны) которых не выходят за его пределы. Конечным звеном служат нейроны, отростки которых покидают Н. ц. и доставляют его командные импульсы к периферическим органам или др. Н. ц. (выходные каналы). Нейроны, составляющие Н. ц., связаны между собой посредством возбуждающих и тормозных синапсов и образуют сложные комплексы, так называемые нейронные сети. Наряду с нейронами, которые возбуждаются только в ответ на приходящие нервные сигналы или действие разнообразных химических раздражителей, содержащихся в крови, в состав Н. ц. могут входить нейроны-ритмоводители, обладающие собственным автоматизмом; им присуща способность периодически генерировать нервные импульсы.

Локализацию Н. ц. определяют на основании опытов с раздражением, ограниченным разрушением, удалением или перерезкой тех или иных участков головного или спинного мозга. Если при раздражении данного участка центральной нервной системы возникает та или иная физиологическая реакция, а при его удалении или разрушении она исчезает, то принято считать, что здесь расположен Н. ц., влияющий на данную функцию или участвующий в определённом рефлексе.

    Свойства нервных центров.

Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма.

Для проведения возбуждения через нервные центры характерны следующие, особенности:

1. Однострочное проведение, оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2.Центральная задержка проведения возбуждения т.е по НЦ возбуждения идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой т.к больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса, это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Эго объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются 11 и мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне. Второе, генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения

нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие - это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например, проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных ИМПУЛЬСОВ, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессор метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

    Торможение в ЦНС.

Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне - действия другого более сильного раздражителя. Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон - один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр. В ЦНС выделяют следующие механизмы торможения:

1| Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов, т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксосоматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия, НЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются, ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП: небольшая. В результате возникшей гиперполяризации возбудимость нейрона падает. Проведение нервных, импульсов через него прекращается. Алкалоид стрихнин может связываться с глицериновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.

2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны.

Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.

3. Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.

    Принципы координации рефлекторных процессов.

Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных ДУГ и нервных центров. Координация рефлекторной деятельности это такое взаимодействие нервных центров и проходящих по ним нервных импульсов, которое обеспечивает согласованную деятельность органов и систем организма. Она осуществляется с помощью следующих процессов:

1. Временное и пространственное облегчение. Это усиление рефлекторной реакции при действии ряда последовательных раздражителей или одновременном их воздействии на несколько рецептивных полей. Объясняется явлением суммации в нервных центрах.

2. Окклюзия явление противоположное облегчению. Когда рефлекторная реакция на два или более сверхпороговых раздражителя меньше, чем ответы на их раздельное воздействие. Оно связано с конвергенцией нескольких возбуждающих импульсов на одном нейроне.

3. Принцип общего конечного пути. Разработан Ч. Шеррингтоном. В основе его лежит явление конвергенции. Согласно этому принципу на одном эфферентном мотонейроне могут образовывать синапсы нескольких афферентных, входящих в несколько рефлекторных дуг. Этот нейрон называется общим конечным путем и участвует в нескольких рефлекторных реакциях. Если взаимодействие этих рефлексов приводит к усилению обшей рефлекторной реакции, такие рефлексы называются союзными. Если же между афферентными сигналами происходит борьба за мотонейрон - конечный путь, то антагонистическими. В результате этой борьбы второстепенные рефлексы ослабляются, а жизненно важным освобождается общий конечный путь.

4. Реципрокное торможение. Обнаружено Ч. Шеррингтоном. Это явление торможения одного Центра в результате возбуждения другого. Т.е. в этом случае тормозится антагонистический центр. Например при возбуждении центров сгибания левой ноги по реципрокному механизму тормозятся центры мышц разгибателей этой же ноги и центры сгибателей правой. В реципрокных взаимоотношениях находятся, центры вдоха и выдоха продолговатого мозга. центры сна и бодрствования и т.д.

5. Принцип доминанты. Открыт А.А. Ухтомским. Доминанта - это преобладающий очаг возбуждения в ЦНС, подчиняющий себе другие НЦ. Доминантный центр обеспечивает комплекс рефлексов, которые необходимы в данный момент для достижения определенной цели. При некоторых условиях возникают питьевая, пищевая, оборонительная, половая и др. доминанты. Свойствами доминантного очага являются повышенная возбудимость, стойкость возбуждения, высокая способность к суммации, инертность. Эти свойства обусловлены явлениями облегчения, иррадиации, с одновременным повышением активности вставочных тормозных нейронов, которые тормозят нейроны других центров.

6. Принцип обратной афферентации. Результаты рефлекторного акта воспринимаются нейронами обратной афферентации и информация от них поступает обратно в нервный центр. Там они сравниваются с параметрами возбуждения и рефлекторная реакция корректируется.

    Методы исследований функций ЦНС.

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3.Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. Электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.

б. Регистрация биопотенциалов нервных различных центров, используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро в метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. Метод внутримозгового введения веществ с помощью микроинофореза.

7. Хронорефлексометрия - определение времени рефлексов.

    Рефлексы спинного мозга.

Рефлекторная функция. Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного, мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы.

Нейрон - это структурно-функциональная единица нервной ткани. Это специализированная клетка, которая, наряду с общими физиологическими свойствами (возбудимость, проводимость), обладает и рядом специфических свойств :

- Воспринимать информацию - переводить информацию раздражителя на биологический язык клетки.

- Обрабатывать информацию - т.е. проводить анализ информации, синтез - соединение различных частей информации после анализа с получением нового качества.

- Кодировать информацию - превращать информацию в форму удобную для хранения в мозге.

- Формировать командный управляющий сигнал, который распространяется на другие клетки нейроны, мышечные клетки.

- Передача информации нейрона на другие структуры.

Нейроны способны контактировать с другими клетками и оказывать на них информационное воздействие (место контактов - синапс).

Все свои виды деятельности нейрон осуществляет за счѐт 3-х физиологических свойств (помимо возбудимости и проводимости):

Рецепция;

Электрогенез;

Нейросекреция.

В общем плане , все нейроны имеют тело – сому и отростки – дендриты и аксоны.

Их условно разделяют по структуре и функциям на следующие группы:

По форме тела: многоугольные, пирамидные, круглые, овальные.

По количеству и характеру отростков:

Униполярные – имеющие один отросток

Псевдоуниполярные – от тела отходит один отросток, который затем делится на 2 ветви.

Биполярные – 2 отростка, один дендритоподобный, другой аксон.

Мультиполярные – имеют 1 аксон и много дендритов.

По медиатору, выделяемому нейроном в синапсе: холинергические, адренергические, серотонинергические, пептидергические и т.д.

По функциям:

Афферентные, или чувствительные - служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС.

Вставочные , или интернейроны, промежуточные - беспечивают переработку, хранение и передачу информации к эфферентным нейронам. Их в ЦНС большинство.

Эфферентные или двигательные - формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

По физиологической роли: возбуждающие и тормозные.

Общими функциями нейронов ЦНС являются прием, кодирование, хранение информации и выработка нейромедиатора. Нейроны, с помощью многочисленных синапсов, получают сигналы в виде постсинаптических потенциалов. Затем перерабатывают эту информацию и формируют определенную ответную реакцию. Следовательно, они выполняют и интегративную, т.е. объединительную функцию .

Связь между нейронами , как видно, осуществляется через промежуток между концами аксона одного нейрона и дендритами другого. Если они лежат в достаточной близости, т. е. промежуток мал, то в этом месте может образоваться синаптический узел, или синапс, связывающий эти два нейрона.

Синапс подобен сопротивлению в электрической цепи. Если это сопротивление велико, то связь между нейронами слабая и возбуждение одного нейрона не вызывает возбуждения другого. Если же «сопротивление» синапса мало, то имеется сильная связь и нейрон без труда возбуждается от аксона другого нейрона, с ним связанного.
Возбуждение нейрона происходит по принципу «все или ничего». Это значит, что нейрон может быть либо возбужден, и от клетки вдоль аксона к синаптическим узлам и далее к другим нейронам идет нервный импульс, либо не возбужден.

2.Гуморальная регуляция. Функции, механизмы взаимодействия гуморальных веществ с клетками­ мишенями. Место и роль желез внутренней секреции в регуляции функции.

Гуморальная регуляция - один из эволюционно ранних механизмов регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость, полость рта) с помощью гормонов, выделяемых клетками, органами, тканями. У высокоразвитых животных, включая человека, гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции. Гуморальная передача нервных импульсов химическими веществами, медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важную роль в гуморальной регуляции играют продукты промежуточного обмена.

Биологическая активность жидких сред организма обусловлена соотношением содержания катехоламинов (адреналина и норадреналина, их предшественников и продуктов распада), ацетилхолина, гистамина, серотонина и других биогенных аминов, некоторых полипептидов и аминокислот, состоянием ферментных систем, присутствием активаторов и ингибиторов, содержанием ионов, микроэлементов и т. д.

В зависимости от строения гормона существуют два типа взаимодействия . Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет. Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Посредники - это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Существует два главных способа передачи сигнала в клетки- мишени от сигнальных молекул с мембранным механизмом действия: аденилатциклазная (или гуанилатциклазная) системы; и фосфоинозитидный механизм.

Система циклазная – это система, состоящая из содержащихся в клетке аденозинциклофосфата, аденилатциклазы и фосфодиэстеразы, регулирующая проницаемость клеточных мембран, участвует в регуляции многих обменных процессов живой клетки, опосредует действие некоторых гормонов. То есть роль циклазной системы заключается в том, что они являются вторыми посредниками в механизме действия гормонов.

Система «аденилатциклаза - цАМФ». Мембраны фермент аденилатциклаза может находиться в двух формах - активированной и неактивированной. Активация аденилатциклазы происходит под влиянием гормон-рецепторного комплекса, образование которого приводит к связыванию гуанилового нуклеотида (ГТФ) с особым регуляторным стимулирующим белком (GS-белок), после чего GS-белок вызывает присоединение магния к аденилатциклазе и ее активацию. Так действуют активизирующие аденилатциклазу гормоны глюкагон, тиреотропин, паратирин, вазопрессин, гонадотропин и др. Некоторые гормоны, напротив, подавляют аденилатциклазу (соматостатин, ангиотензин-П и др.)

Под влиянием аденилатциклазы из АТФ синтезируется цАМФ, вызывающий активацию протеинкиназ в цитоплазме клетки, обеспечивающих фосфорилирование многочисленных внутриклеточных белков. Это изменяет проницаемость мембран, т.е. вызывает типичные для гормона метаболические и, соответственно, функциональные сдвиги. Внутриклеточные эффекты цАМФ проявляются также во влиянии на процессы пролиферации, дифференцировки, на доступность мембранных рецепторных белков молекулам гормонов.

Система «гуанилатциклаза - цГМФ». Активация мембранной гуанилатциклазы происходит не под непосредственным влиянием гормон-рецепторного комплекса, а опосредованно через ионизированный кальций и оксидантные системы мембран. Так реализуют свои эффекты натрийуретический гормон предсердий - атриопептид, тканевой гормон сосудистой стенки. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ противоположны. Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокращений гладких мышц кишечника цГМФ и подавление цАМФ.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат - это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора. Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са+2-кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса "Са+2-кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть: циклические нуклеотиды (ц-АМФ и ц-ГМФ); ионы Са; комплекс "Са-кальмодулин"; диацилглицерин; инозитолтрифосфат.

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты : одним из этапов передачи сигнала является фосфорилирование белков; прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия. Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

Железы внутренней секреции – специализированные органы, не имеющие выводных протоков и выделяющие секрет в кровь, церебральную жидкость, лимфу через межклеточные щели.

Физиологическая роль желез внутренней секреции связана с их влиянием на механизмы регуляции и интеграции, адаптации, поддержания постоянства внутренней среды организма.