Как называется рецептор с которым взаимодействует ацетилхолин. Ацетилхолин - это медиатор нервного возбуждения

Ацетилхолин - это передатчик нервного возбуждения в ЦНС, окончаниях парасимпатических нервов и Он выполняет важнейшие задачи в процессах жизнедеятельности. Аналогичными функциями обладают аминокислоты, гистамин, дофамин, серотонин, адреналин. Ацетилхолин считается одним из важнейших передатчиков импульсов в мозг. Рассмотрим это вещество подробнее.

Общие сведения

Окончания волокон, от которых медиатор ацетилхолин осуществляет передачу, именуются холинергическими. Кроме этого, существуют специальные элементы, с которыми он взаимодействует. Они называются холинорецепторами. Эти элементы представляют собой сложные молекулы белка - нуклеопротеиды. Рецепторы ацетилхолина отличаются тетрамерной структурой. Они локализуются на внешней поверхности плазматической (постсинаптической) мембраны. По своей природе эти молекулы неоднородны.

В экспериментальных исследованиях и в медицинских целях используется препарат "Ацетилхолин-хлорид", представленный в растворе для инъекций. Другие лекарственные средства на основе этого вещества не выпускаются. Существуют синонимы препарата: "Миохол", "Ацеколин", "Цитохолин".

Классификация холиновых белков

Некоторые молекулы находятся в районе холинергических постганглионарных нервов. Это область гладкой мускулатуры, сердца, желез. Они называются м-холинорецепторами - мускариночувствительными. Другие белки расположены в районе ганглионарных синапсов и в нервно-мышечных соматических структурах. Они именуются н-холинорецепторами - никотиночувствительными.

Пояснения

Приведенная выше классификация обуславливается спецификой реакций, которые возникают, когда взаимодействуют эти биохимические системы и ацетилхолин. Это , в свою очередь, объясняет причины некоторых процессов. Например, снижение давления, усиленную секрецию желудочных, слюнных и прочих желез, брадикардию, сужение зрачков и пр. при влиянии на мускариночувствительные белки и сокращение скелетных мышц и пр. при воздействии на никотиночувствительные молекулы. При этом в последнее время ученые начали разделять м-холинорецепторы на подгруппы. Наиболее изучена сегодня роль и локализация м1- и м2-молекул.

Специфика влияния

Ацетилхолин - это не избирательный элемент системы. В той или иной степени он воздействует и на м-, и на н-молекулы. Интерес представляет мускариноподобное влияние, которое оказывает ацетилхолин. Это воздействие проявляется в замедлении сердечного ритма, расширении кровеносных сосудов (периферических), активизации перистальтики кишечника и желудка, сокращении мышц матки, бронхов, мочевого, желчного пузыря, интенсификации секреции бронхиальных, потовых, пищеварительных желез, миозе.

Сужение зрачка

Круговая мышца радужной оболочки, иннервируемая постганглионарными волокнами в начинает усиленно сокращаться одновременно с ресничной. При этом имеет место расслабление цинновой связки. В результате возникает спазм аккомодации. Сужение зрачка, связанное с влиянием ацетилхолина, как правило, сопровождается понижением внутриглазного давления. Данный эффект частично обуславливается расширением оболочки в шлеммовом канале и фонтановых пространств на фоне миоза и уплощения радужной оболочки. Это способствует улучшению оттока жидкости из внутренних глазных сред.

Благодаря возможности понижать внутриглазное давление, как ацетилхолин, препараты на основе других подобных ему веществ используются при лечении глаукомы. К ним, в частности, относят холиномиметики.

Никотиночувствительные белки

Никотиноподобное действие ацетилхолина обуславливается его участием в процессе передачи сигналов с преганглионарных нервных волокон на постганглионарные, находящиеся в вегетативных узлах, и с двигательных окончаний на поперечнополосатые мышцы. В малых дозах вещество выступает в качестве физиологического передатчика возбуждения. Если , то может развиться стойкая деполяризация в районе синапсов. Также существует вероятность блокирования передачи возбуждения.

ЦНС

Ацетилхолин в организме играет роль передатчика сигналов в различных мозговых отделах. В малой концентрации он может облегчать, а в большой - замедлять синаптическую трансляцию импульсов. Изменения обмена вещества могут способствовать развитию мозговых нарушений. Антагонисты, которым противопоставляется ацетилхолин, - препараты психотропной группы. При их передозировке может возникнуть нарушение высших нервных функций (галлюциногенный эффект и пр.).

Синтез ацетилхолина

Он происходит в цитоплазме в нервных окончаниях. Запасы вещества располагаются в пресинаптических терминалях в виде пузырьков. Возникновение приводит к высвобождению ацетилхолина из нескольких сотен "капсул" в синаптическую щель. Вещество, выделяющееся из пузырьков, связывается на постсинаптической мембране со специфическими молекулами. Это повышает ее проницаемость для натриевых, кальциевых и калиевых ионов. В результате возникает возбуждающий постсинаптический потенциал. Влияние ацетилхолина ограничивается посредством его гидролиза с участием фермента ацетилхолиэстеразы.

Физиология никотиновых молекул

Первому описанию способствовал внутриклеточный отвод электрических потенциалов. Никотиновый рецептор стал одним из первых, на который удалось записать токи, пропускаемые через единичный канал. В открытом состоянии сквозь него могут проходить ионы К+ и Na+, в меньшей степени двухвалентные катионы. При этом проводимость канала выражена в постоянной величине. Продолжительность открытого состояния, тем не менее, выступает характеристикой, зависящей от напряжения потенциала, приложенного к рецептору. При этом последний стабилизируется при переходе от деполяризации мембраны к гиперполяризации. Кроме этого, отмечается явление десенсетизации. Оно возникает при продолжительной аппликации ацетилхолина и прочих антагонистов, снижающей чувствительность рецептора и увеличивающей длительность открытого состояния канала.

Электрическое раздражение

Дигидро-β-эритроидин блокирует никотиновые рецепторы головного мозга и нервных ганглий при проявлении ими холинергического ответа. Для них также характерно высокоафинное сродство с тритий-меченным никотином. Чувствительные нейронные рецепторы αBGT в гиппокампе отличаются низкой восприимчивостью ацетилхолина, в отличие от нечувствительных αBGT-элементов. Оборотным и селективным конкурентным антагонистом первых выступает метилликаконитин.

Отдельные производные анабезиина провоцируют селективное активационное воздействие на группу αBGT-рецепторов. Проводимость их ионного канала достаточно высока. Эти рецепторы отличаются уникальными вольт-зависимыми характеристиками. Общеклеточный ток при участии деполяризационных величин эл. потенциала указывает на уменьшение пропуска ионов через каналы.

Данное явление при этом регулируется содержанием в растворе элементов Mg2+. Этим данная группа отличается от рецепторов мышечных клеток. Последние не претерпевают каких-либо изменений тока ионов при корректировке величин мембранного потенциала. При этом а N-метил-D-аспартатный рецептор, обладающий относительной проницаемостью для элементов Са2+, показывает обратную картину. При увеличении потенциала до гиперполяризующих значений и повышении содержания ионов Mg2+ ионный ток блокируется.

Особенности мускариновых молекул

М-холинорецепторы относятся к классу серпентивных. Они передают импульсы через гетеротримерные G-протеины. Группа мускариновых рецепторов была выявлена благодаря их свойству связывать алкалоид мускарин. Опосредованно эти молекулы были описаны в начале 20-го столетия при изучении эффектов кураре. Непосредственное исследование этой группы началось в 20-30 гг. того же века после идентификации соединения ацетилхолина как нейромедиатора, поставляющего импульс в нервно-мышечные синапсы. М-белки активизируются под влиянием мускарина и блокируются атропином, н-молекулы активируются под воздействием никотина и блокируются кураре.

Спустя время в обеих группах рецепторов было выявлено большое количество подтипов. В нервно-мышечных синапсах присутствуют только никотиновые молекулы. Мускариновые рецепторы обнаруживаются в клетках желез и мускулатуры, а также - вместе с н-холинорецепторами - в нейронах ЦНС и нервных ганглиях.

Функции

Мускариновые рецепторы обладают целым комплексом различных свойств. В первую очередь они располагаются в автономных ганглиях и отходящих от них постганглиозных волокнах, направленных к органам-мишеням. Это указывает на участие рецепторов в трансляции и модуляции парасимпатических эффектов. К ним, например, относят сокращение гладких мышц, расширение сосудов, усиление секреции желез, снижение частоты сокращений сердца. Холинергические волокна ЦНС, в составе которых присутствуют интернейроны и мускариновые синапсы, сконцентрированы преимущественно в коре мозга, гиппокампе, ядрах ствола, стриатуме. В других участках они обнаруживаются в меньшем количестве. Центральные м-холинорецепторы влияют на регуляцию сна, памяти, обучения, внимания.

Ацетилхолицин представляет собой нейромедиатор, осуществляющий связующие функции в организме человека. Это соединение доводит импульсы до мышц и целого ряда органов. Оно используется в исследованиях, при этом его лекарственное значение в настоящее время невелико вследствие существенных побочных эффектов при большой дозе и наличия более действенных аналогов.

Общие сведения

Ацетилхолин имеет формулу CH 3 -CO 2 -CH 2 -CH 2 -N(CH 3) 3 .

Ацетилхолин - это органическое соединение, которое выступает в организме как , в том числе в парасимпатической нервной системе и в нервно-мышечном синапсе. В качестве нейромедиатора данное соединение обладает следующими характеристиками:

  • его синтез происходит в пресинаптическом нейроне;
  • аккумуляция ацетилхолина происходит в пузырьках;
  • это соединение выделяется в прямой пропорции к силе стимула, вызывающего такое выделение (частоте импульсации);
  • постсиноптическое действие этого вещества прямым образом иллюстрируется с помощью микроинофореза;
  • дезактивировать данный медиатор можно с помощью действенных механизмов.

Определено, что лишь соединения, у которых наблюдается каждая из данных характеристик, могут рассматриваться как медиаторы.

В химическом плане ацетилхолин является сложным эфиром, образованным холином и уксусной кислотой.

В организме данное вещество синтезируется посредством холинэстеразы - особого фермента. При его разрушении происходит образование уксусной кислоты и оксида. Соединение нестойкое и под влиянием ацетилхолинэстеразы оно также распадается весьма быстро.

Также возможно получить его искусственным путем в форме одной и из солей, к примеру, хлорида. Полученный таким способом препарат (ацетилхолин-хлорид) применяют для исследования в сфере фармакологии и в редких случаях как лекарственный препарат. Выпускается соединение в виде ампулы объёмом 5 миллилитров, в которых находится 0,1 либо 0,2 грамма сухого вещества. Для инъекций его растворяют в стерильной воде объёмом 2–5 миллилитров.

Ацетилхолин представляет собой кристаллическую массу белого цвета или бесцветные кристаллы.

Классификация холиновых белков (какие бывают и их специфика)

Холиновые белки подразделяются на воздействующие на н-холинорецепторы и м-холинорецепторы. Холинрецепторы - макромолекулы белка сложной структуры, которые располагаются на наружной стороны постсинаптической мембраны.

Первые из нихотиночувствительные, отсюда и буква «н» в их названии. Они встречаются внутри нервно-мышечных структур и ганглионных синапсов.

Вторая разновидность белков приобрела букву «м», поскольку они являются мускариночувствительными. Они присутствуют в области холинергических постганглионарных нервов. Иначе говоря, в сердце, гладкой мускулатуре и железах.

В нервной системе ацетилхолин синтезируется с участием глюкозы. При ее распаде возникают ацетильные группы, выделяется энергия. Благодаря этой энергии возникает аденозинтрифосфат, а уже посредством этого соединения происходит фосфорилирование соединений промежуточного характера, требуемых для синтеза. Предпоследняя стадия - это формирование ацетилкофермента А, из которого следом при реакции с холином возникает уже сам ацетилхолин.

При этом механизм попадания холинов в место образования ацетилхолина для реакции с ацетилкоферментом А в настоящее время неизвестен. Предполагается, что его половина поступает в это место из плазмы крови, а ещё половина остается после гидролиза прежнего

Синтез данного вещества происходит в нервных окончаниях внутри цитоплазмы аксонов. После этого соединение складируется в синаптических везикулах (пузырьках), В отдельном подобном органоиде находится от 1000 до 10000 молекул этого соединения. Предполагается, что примерно 15–20% объема данного вещества в пузырьках составляет количество ацетилхолина, доступное к немедленному использованию. Прочий хранящийся в везикулах запас может быть активирован для использования лишь спустя некоторое время после соответствующего сигнала.

Распад ацетилхолина в человеческом организме происходит весьма быстро. Запускается данный процесс ацетилхолинэстераза, специальный фермент.

Функции

Функция ацетилхолина - служить медиатором внутри ЦНС (центральной нервной системы). Это вещество влияет на передачу импульсов от одних разделов головного мозга к другим. При этом небольшое содержание данного вещества способствует передаче импульсов, а его значительное количество - тормозит её.

Также ацетилхолин служит для передачи к мускулам тела. При нехватке данного вещества сила, с которой сокращаются мускулы, падает. Недостаток именно данного соединения приводит к тому, что человека начинает страдать болезнью Альцгеймера.

Действие ацетилхолина выражается в более медленном ритме сердцебиения, снижении артериального давления, увеличении диаметра кровеносных сосудов периферического расположения. Соединение улучшает перистальтику в пищеварительном тракте (кишечнике и желудке). Также его присутствие усиливает сокращательную способность мускулатуры целого ряда органов, включая мочевой и желчный пузыри, матку, а также бронхи. Ацетилхолин усиливает железную секрецию, в частности у слёзных, потовых, бронхиальных и пищеварительных желёз.

Помимо этого он вызывает сужение зрачка (миоз), этот эффект становится следствием более интенсивных сокращение управляющей радужной оболочкой круговой мышцы, на которую воздействуют находящиеся в глазодвигательном нерве постганглионарные холинергетические волокна. .Такое сужение зрачка чаще всего идет в сочетании с уменьшением внутриглазного давления. Это обусловлено тем, что при таком сужении происходит расширение шлеммова канала, а также пространства в углу, образуемом радужной оболочкой и роговицей. Вследствие этого жидкость получает большую возможность для оттока из глазной внутренней среды.

Также ацетилхолин служит для улучшения концентрации внимания путем выработки нейронов, располагающихся в .

Ещё одна функция соединения - это влияние на засыпание и пробуждение. Спящий просыпается, после того как возрастает интенсивность деятельности холинергических нейронов, располагающихся в стволе головного мозга, а также в переднем мозге в базальных ядрах.

Ацетилхолицин, выработанный искусственно, используют для лечения лишь в некоторых случаях. Это обусловлено тем, что при пероральном приёме данное соединение быстро подвергается гидролизации, в результате чего его всасывания со слизистых желудочно-кишечного тракта не происходит. При введении его в организм иным образом, в том числе посредством инъекций он также не оказывает существенного воздействия на центральную нервную систему. Именно поэтому сейчас в большинстве случаев от него отказываются.

Также требуется иметь в виду, что ацетилхолин сужает вены в сердце. Если ввести пациенту чрезмерную дозу данного вещества, то результатом может стать брадикардия, падение артериального давления, аритмия, потливость и иные неблагоприятные эффекты.

АЦЕТИЛХОЛИН - медиатор нервного возбуждения. Синтезируется в организме из аминоспирта холина и уксусной кислоты. Биологически очень активное вещество.

Ацетилхолин оказывает многостороннее действие на организм. Основная функция - медиация нервных импульсов. Нервные волокна и соответствующие им нейроны, осуществляющие передачу нервных импульсов посредством ацетилхолина, называются холинергическими. К ним относятся мотонейроны, иннервирующие скелетные мышцы; преганглионарные нейроны парасимпатических и симпатических нервов; постганглионарные нейроны всех парасимпатических и некоторых симпатических нервов (матки, потовых желез) и некоторые нейроны центральной нервной системы. Все холинергические волокна содержат холинацетилтрансферазу - специфический фермент, с помощью которого происходит синтез ацетилхолина. Ацетилхолин находится в нервных окончаниях в пузырьках, из которых он изливается в синаптическую щель в момент прихода нервного импульса. Освобождение ацетилхолина нервными окончаниями носит квантовый характер. По-видимому, содержимое пузырька и составляет ту наименьшую порцию ацетилхолина (квант), которая может быть выделена. В нормальных условиях каждый нервный импульс вызывает выделение нескольких сотен квантов ацетилхолина. Взаимодействуя со специфической макромолекулой на постсинаптической мембране - холинорецептором, ацетилхолин повышает проницаемость мембраны для ионов: возникает постсинаптический потенциал, который изменяет возбудимость эффекторной клетки, а в случае нервно-мышечного синапса является непосредственной причиной генерации потенциала действия. Эффект ацетилхолина прекращается под влиянием фермента ацетилхолинэстеразы (см. Холинэстеразы), который гидролизует ацетилхолин на малоактивный холин и уксусную кислоту, а также вследствие простой диффузии ацетилхолина из синаптической щели. В молекуле ацетилхолина есть две активные группы, обеспечивающие взаимодействие с холинорецептором: заряженная триметиламмониевая группа (катионная «головка»), которая реагирует с анионной группой в холинорецепторе, и сильно поляризованная сложноэфирная группа, реагирующая с так называемым эстерофильным участком холинорецептора.

Различают два вида действия ацетилхолина: мускариноподобное и никотиноподобное. Мускариноподобное действие проявляется эффектами, аналогичными тем, которые возникают при раздражении парасимпатических нервов гладких мышц, сердца, желез, и снимается атропином; никотиноподобное выражается возбуждением вегетативных ганглиев и мозгового вещества надпочечников, а также скелетной мускулатуры и снимается большими дозами никотина, гексонием, тубокурарином. В соответствии с этим холинореактивные системы разных органов обозначают как м-холинореактивные (мускариночувствительные) и н-холинореактивные (никотиночувствительные) .

В обычных условиях преобладает мускариноподобное действие ацетилхолина. При инстилляции ацетилхолина в глаз происходит сужение зрачка и спазм аккомодации, снижается внутриглазное давление. При попадании в общий кровоток наблюдается снижение кровяного давления, вызванное расширением сосудов (коронарные сосуды человека ацетилхолин суживает) и в меньшей степени замедлением сердечной деятельности, усиление двигательной активности желудочно-кишечного тракта, сокращение мускулатуры бронхов, желчного и мочевого пузыря, матки, усиление секреции желез с холинергической иннервацией, особенно слюнных и потовых.

Никотиноподобное действие ацетилхолина на вегетативные ганглии и надпочечники проявляется после атропинизации и при использовании более высоких доз. Оно выражается в прессорном эффекте. Ацетилхолин также стимулирует никотиночувствительные системы каротидных клубочков и рефлекторно возбуждает дыхание.

Все эффекты ацетилхолина можно усилить путем предварительного введения антихолинэстеразных веществ (эзерин, прозерин и др.). При обычных путях введения ацетилхолин не проникает через гемато-энцефалический барьер и не оказывает влияния на центральную нервную систему. Многообразие эффектов ацетилхолина, среди которых могут оказаться нежелательные, ослабляющие друг друга, а также кратковременность действия крайне ограничивают его применение в медицинской практике. Ацетилхолин широко используют при экспериментальном исследовании функций холинергических структур в виде хорошо растворимой соли - ацетилхолина хлорида (Acetylcholini chloridum, Acetylcholinum chloratum; список Б). Форма выпуска: ампулы по 5 мл, содержащие 0,2 г препарата.

Ацетилхолин как медиатор аллергических реакций

Сходство картины отравления ацетилхолином у собак с картиной развития у них анафилактического шока (см.) позволило предположить непосредственное участие холинергических процессов, имеющих место в деятельности некоторых органов, в механизме аллергических реакций этих органов. Таким органом является, напр., язык собаки, имеющий парасимпатическую иннервацию. Предполагалось, что точкой приложения антигена в сенсибилизированном органе служат окончания парасимпатических нервов. Это было подтверждено экспериментально. Введение антигена в сосуды языка сенсибилизированной собаке вызывает явный сосудорасширяющий эффект. В норме эти явления не наблюдаются. При выключении парасимпатической иннервации половины языка путем предварительного (за месяц до опыта) вылущения подчелюстной и подъязычных слюнных желез и вместе с ними подчелюстных и подъязычных периферических узлов парасимпатического иннервационного аппарата сосудов языка собаки полностью снимается описанная выше реакция сосудов этой половины языка на антиген. Вместе с тем при перерезке язычного нерва характер сосудистой реакции на антиген не меняется, что свидетельствует об отсутствии реакции на антиген чувствительных окончаний соматических нервов. Участие ацетилхолина в процессах распространения отравления в организме маловероятно. Роль анафилактического яда в этом смысле выполняют, очевидно, более стойкие продукты распада ткани, к которым относятся активные кинины, серотонин, гистамин и др. Таким образом, ацетилхолиновая гипотеза патогенеза аллергии ни в какой степени не противоречит представлению об участии гистамина в качестве одного из важных звеньев в механизме аллергической альтерации ткани. Участие ацетилхолина и холинергических процессов в механизме «органной» аллергии, то есть в условиях его действия in loco nascendi в соответствующих холинергических синапсах, имеет значение существенного, а в ряде структур и основного звена в определении функциональных выражений аллергии. К таким структурам относятся синаптические связи в вегетативной и центральной нервной системе, парасимпатическая сосудодвигательная иннервация, иннервация сердца и т. д. Вероятно, в них изменяется активность холинэстеразы, увеличивается скорость освобождения ацетилхолина при возбуждении их специфическим антигеном и, что самое важное, в них появляется возбудимость к специфическому антигену, который совершенно или почти совершенно отсутствовал в нормальном состоянии.

Библиография: Аничков С. В. и Гребенкина М. А. Фармакологическая характеристика холинорецепторов центральной нервной системы, Бюлл. эксперим. биол, и мед., т. 22, № 3, с. 28, 1946; Кибяков А. В. Химическая передача нервного возбуждения, М.- Л., 1964, библиогр.; Михельсон М. Я. и Зеймаль Э.В. Ацетилхолин, о молекулярном механизме действия, Л., 1970, библиогр.; Руководство по фармакологии, под ред. Н. В. Лазарева, т. 1, с. 137, Л., 1961; Турпаев Т. М. Медиаторная функция ацетилхолина и природа холино-рецептора, М., 1962; Э к к л с Д. Физиология синапсов, пер. с англ., М., 1966, библиогр.; Central cholinergic transmission and its behavioral aspects, Fed. Proc., v. 28, p. 89, 1969, bibliogr.; Dale H.H. The action of certain esters and ethers of choline, and their relation to muscarine, J. Pharmacol., v. 6, p. 147, 1914; Goodman L. S. a. G i 1 m a n A. Pharmacological basis of therapeutics, N. Y., 1970; Katz B. The release of neural transmitter substances, Springfield, 1969, bibliogr.; Michelson M. J. a. Danilov A. F. Cholinergic transmissions, в кн.: Fundament. biochem. Pharmacol., ed. by Z. M. Bacq, p. 221, Oxford a. o., 1971.

H. Я. Лукомская, М. Я. Михельсон; А. Д. Адо (алл.).

Нейромедиаторы играют важную роль в надлежащем функционировании нервной системы человека. Одним из таких веществ является ацетилхолин – органическая молекула, наличие которой характерно для мозга различных млекопитающих, птиц и, конечно же, человека. Какую роль нейромедиатор ацетилхолин играет в организме человека, почему он так важен и существуют ли способы повышения уровня ацетилхолина в организме.

Что представляет собой нейромедиатор ацетилхолин и каковы его функции?

Химическая формула нейромедиатора ацетилхолина CH3COO(CH2)2N+(CH3). Эта органическая молекула играет роль в функционировании центральной и периферической нервной системы. Место синтеза ацетилхолина – аксоны нервных клеток, вещества, необходимые для формирования ацетилхолина: ацетилкофермент А и холин (витамин В4). За баланс данного медиатора отвечает ацетилхолинэстераза (фермент), который способен разрушать избыточный ацетилхолин на холин и ацетат.

Функции ацетилхолина

  • улучшение когнитивных способностей;
  • улучшение нервно-мышечной связи.

Ученые обнаружили, что нейромедиатор ацетилхолин не только помогает улучшить память и способствовать обучению, он также помогает мозгу различать старые и новые воспоминания – благодаря ему мы помним, что было вчера, а что – пять лет назад.

В мембране мышечных клеток находятся Н-холинорецпеторы, которые чувствительны к ацетилхолину. Когда ацетилхолин соединяется с такого рода рецептором, ионы натрия попадают в клетки мышц, в результате чего мышцы сокращаются. Что касается действия ацетилхолина на сердечную мышцу, оно отличается от воздействия на гладкие мышцы – частота сердечных сокращений уменьшается.

Дефицит нейромедиатора ацетилхолина: причины и методы восполнения

При уменьшении уровня нейромедиатора ацетилхолина наблюдается дефицит ацетилхолина.

Симптомы дефицита ацетилхолина:

  • неумение слушать;
  • неспособность сконцентрироваться;
  • неспособность запоминать и вспоминать информацию (нарушение памяти);
  • медленная обработка информации;
  • жировой метаморфоз печени;

Когда уровень ацетилхолина в организме нормализируется, а происходит это посредством правильного питания, воспаление подавляется, а связь между мышцами и нервами улучшается.

Риску снижения уровня нейромедиатора ацетилхолина подвержены:

  • марафонцы и спортсмены, которые выполняют упражнения на выносливость;
  • люди, злоупотребляющие алкоголем;
  • вегетарианцы;
  • люди, рацион питания которых не сбалансирован.

Основным фактором, способствующим снижению или повышению ацетилхолина в организме, является сбалансированное питание.

Как увеличить уровень нейромедиатора ацетилхолина в организме?

Существует три основных способа повышения уровня нейромедиатора ацетилхолина в организме:

  • питание;
  • регулярная физическая активность;
  • интеллектуальные тренировки.

Продукты питания, богатые холином (витамином В4) – печень (куриная, говяжья и т.д.), яйца, молоко и молочные продукты, индейка, зеленолистные овощи. Кофе лучше заменить чаем.

При нехватке сырья для производства нейромедиатора ацетилхолина мозг начинает «есть сам себя», поэтому тщательно следите за своим рационом питания.

ЭТО ОПИСАНИЕ ХАРАКТЕРА «НЕСЧАСТЛИВОГО» ЧЕЛОВЕКА

Его 2 основные проблемы:

1) хроническое неудовлетворение потребностей,

2) невозможность направить свой гнев вовне, сдерживание его, а вместе с ним сдерживание и всех теплых чувств, с каждым годом делают его все более и более отчаивающимся: чтобы он ни предпринимал, лучше не становится, наоборот, только хуже. Причина – он делает много, но не то.

Если ничего не предпринять, то, с течением времени, либо человек «сгорит на работе», нагружая себя все больше и больше – до полного истощения; либо его собственное Я будет опустошаться и обедняться, появится невыносимая ненависть к себе, отказ от заботы о себе, в перспективе - даже от самогигиены.

Человек становится похож на дом, из которого судебные приставы вынесли мебель.

На фоне безнадежности, отчаяния и истощения нет сил, энергии даже на мышление.

Полная утрата способности любить. Он хочет жить, но начинает умирать: нарушается сон, обмен веществ…

Трудно понять - чего ему не хватает именно потому, что речь не идет о лишенности обладания кем-то или чем-то. Наоборот - у него обладание лишенности, и он не в состоянии понять чего лишен. Утраченным оказывается собственное Я. Ему невыносимо тягостно и пусто: а он даже не может оформить это в слова.

Если вы узнали в описании себя, и хотите что-то изменить, вам необходимо срочно научиться двум вещам:

1. Выучить нижеследующий текст наизусть и повторять его все время, пока не научитесь пользоваться результатами этих новых верований:

  • Я имею право на потребности. Я есть, и я - есть я.
  • Я имею право нуждаться и удовлетворять потребности.
  • Я имею право просить об удовлетворении, право добиваться того, в чем нуждаюсь.
  • Я имею право жаждать любви и любить других.
  • Я имею право на достойную организацию жизни.
  • Я имею право выражать недовольство.
  • Я имею право на сожаление и сочувствие.
  • … по праву рождения.
  • Я могу получить отказ. Я могу быть один.
  • Я позабочусь о себе в любом случае.

Хочу обратить внимание моих читателей на то, что задача «выучить текст» не является самоцелью. Аутотренинг сам по себе не даст никаких устойчивых результатов. Каждую фразу важно прожить, прочувствовать, найти ей подтверждение в жизни. Важно, чтобы человек захотел поверить, что мир может быть устроен как-то иначе, а не только так, как он привык его себе воображать. Что от него самого, от его представлений о мире и о себе в этом мире, зависит то, как он проживет эту жизнь. А эти фразы - лишь повод для раздумий, размышлений и поисков собственных, новых «истин».

2. Научиться направлять агрессию на того, кому она адресована на самом деле.

…тогда появится возможность испытывать и выражать людям и теплые чувства. Осознать, что гнев не разрушителен, и может предъявляться.

ХОТИТЕ УЗНАТЬ ЧЕГО НЕ ХВАТАЕТ ЧЕЛОВЕКУ, ЧТОБЫ СТАТЬ СЧАСТЛИВЫМ?

ЗА К АЖДОЙ «НЕГАТИВНОЙ ЭМОЦИЕЙ» ЛЕЖИТ ПОТРЕБНОСТЬ ИЛИ ЖЕЛАНИЕ, УДОВЛЕТВОРЕНИЕ КОТОРЫХ И ЕСТЬ КЛЮЧ К ИЗМЕНЕНИЯМ В ЖИЗНИ…

ДЛЯ ПОИСКА ЭТИХ КЛАДОВ Я ПРИГЛАШАЮ ВАС НА СВОЮ КОНСУЛЬТАЦИЮ:

ЗАПИСАТЬСЯ НА КОНСУЛЬТАЦИЮ МОЖНО ПО ЭТОЙ ССЫЛКЕ:

Психосоматические заболевания (так будет корректней) - это те расстройства в нашем теле, в основе которых лежат психологические причины. психологические причины - это наши реакции на травматические (сложные) жизненные события, наши мысли, чувства, эмоции, которые не находят своевременного, правильного для конкретного человека выражения.

Психические защиты срабатывают, мы забываем об этом событии через время, а иногда и моментально, а вот тело и неосознанная часть психики все помнят и посылают нам сигналы в виде расстройств и болезней

Порой призыв может быть отреагировать на какие-то события из прошлого, вывести «захороненные» чувства наружу, или симптом просто символизирует то, что мы себе запрещаем.

ЗАПИСАТЬСЯ НА КОНСУЛЬТАЦИЮ МОЖНО ПО ЭТОЙ ССЫЛКЕ:

Негативное влияние стресса на человеческий организм, а особенно дистресса, колоссально. Стресс и вероятность развития болезней тесно взаимосвязаны. Достаточно сказать о том, что стресс способен снижать иммунитет приблизительно на 70%. Очевидно, что такое снижение иммунитета может вылиться во что угодно. И еще хорошо, если это будут просто простудные заболевания, а если онкологические болезни илиастма, лечение которых уже крайне затруднительно?

Доброго всем времени суток! Что мы знаем о мозге и об интеллектуальных способностях? Откровенно говоря, мало, но что мы знаем точно, что есть нейромедиатор, который способствует улучшению когнитивных способностей. Если теория Дарвина верна, то он, с каждым поколением будет вырабатываться в большем количестве, если человек не деградирует. Интерес в том, что его уровень можно повысить уже сейчас, более того, с ацетилхолином можно «играть», чтобы он развивал сначала одно потом другое свойство мозга. Он не сделает вас счастливее, энергичнее или спокойнее, но он поможет стать Человеком более разумным, чем был до этого, он ускорит процесс обучения, при прочих равных условиях.

Ацетилхолин один из первых открытых , произошло это в первой половине 20-го века.

Для чего вырабатывается ацетилхолин?

Он ответственен за интеллектуальные способности, а так же за нервно-мышечную связь, не только бицепсы, трицепсы, но и вегетативную нервную систему, тоесть за мышцы органов.

Большие дозировки ацетилхолина «замедляют» организм, «малые» ускоряют.

Начинает более активно вырабатываться в ситуации получения новых данных или воспроизводства старых.

Где и как вырабатывается

Ацетилхолин синтезируется в аксонах, нервных терминалях, это участок, где окончание одного нейрона примыкает к другому, из 2-х веществ:


Затем ацетилхолин в нейроне упаковывается в своеобразные шарики, контейнеры, под названием везикулы в количестве около 10 000 молекул. И направляется к окончанию нейрона в пресинаптическое окончание. Там везикулы сливаются клеточной мембраной, а их содержимое вылетает из нейрона в синаптическую щель. Представьте железную сетку, которую часто натягивают вместо заборов в небольших городках и маленький пакет с водой. Мы кидаем этот пакет в сетку, он рвется, остается на сетке, а вода летит дальше. Принцип похож: ацетилхолин в везикулах, шариках направляется к окончанию нейрона, там «рвется» шарик остался внутри, а ацетилхолин пролетел.

Ацетилхолин или задерживается в синаптической щели, или проникает в другой нейрон, или возвращается обратно в первый. Если возвращается, то снова собирается в пакеты и об забор)

Как он попадает во второй нейрон?

Каждый нейромедиатор стремится к своему рецептору на поверхности 2-го нейрона. Рецепторы – это как двери, к каждой двери нужен свой ключ, свой нейромедиатор. У ацетилхолина есть 2 типа ключей, с помощью которых он открывает 2 типа дверей в другой нейрон: никотиновый и мускариновый.

Интересный момент : За баланс ацетилхолина в синаптической щели отвечает фермент Ацетилхолинэстераза. Когда вы объедаетесь некоторыми таблетками-ноотропами, ацетилхолин повышается, если его количество становится сумасшедшим, то включается этот фермент. Он разрушает «лишний» ацетилхолин на холин и ацетат.

У больных Альцгеймером (плохая память) этот фермент работает на повышенных оборотах, неплохие результаты в их лечении показывают препараты с временным ингибированием фермента ацетилхолинэстеразы. Ингибирование значит торможение реакции, тоесть лекарства, которые тормозят работу фермента, который разрушает ацетилхолин, грубо говоря, делают умнее . НО!!! Есть огромное НО! Необратимое ингибирование этого фермента слишком сильно увеличивает концентрацию ацетилхолина, это не есть гуд.

Это вызывает судороги, паралич, даже смерть. Необратимые ингибиторы ацетилхолинэстеразы – это большинство нервно-паралитических газов. Нейромедиатора становится так много, что все мышцы буквально замирают, в сокращённом положении. Если сильно сузятся, например, бронхи – человек задохнется. Ну вот, теперь вы знаете, как работают парализующие газы.

Плюсы ацетилхолина:

— Улучшает когнитивные способности мозга, делает умнее.

— Улучшает память, помогает в старости.

— Улучшает нервно-мышечную связь. Полезен в спорте, засчет более быстрой адаптации организма к стрессу. Он косвенно заставит поднять больший вес или быстрее пробежать дистанцию, через быстрое привыкание к существующим условиям.

— Ацетилхолин не стимулируется никакими наркотиками, а скорее подавляется, нет повода для злоупотреблений. В наибольшей степени ацетилхолин подавляется галлюциногенами. Это логично, для возникновения бреда, необходим туповатый мозг.

— В целом, полезный нейромедиатор, для повседневной спокойной жизни. Помогает спланировать, меньше импульсивных решений и ошибок. Соответствует пословице «7 раз отмерь, один раз отрежь».

Минусы ацетилхолина:

— Вреден при стрессовых ситуациях, где нужно действовать.

— Тормозит организм, когда его много. Посмотрите на ученых, 90% спокойные и безмятежные как удавы. Мимо пролетит дракон – они не шелохнутся. Но ученые умные – и не поспоришь.

Поправка : люди разные и «наборы» нейромедиаторов разные, если у человека много ацетилхолина и много глутамата – то он будет более быстрый и решительный, чем у кого норма. А интеллектуальный потенциал поменяется незначительно.