Футурология: Футурология. Солнечный парус

Кратко о статье: Раньше извозчики кричали: «Но, пошла!», летчики - «От винта!», а Гагарин ограничился лаконичным: «Поехали!». Вполне возможно, что через каких-нибудь 20-30 лет космонавты будут оглашать радиоэфир «морскими» возгласами типа: «Поднять грот, убрать бом-брамсели!», ведь солнечный парус - дешевое, доступное, и очень эффективное средство перемещения в космосе, которое сейчас рассматривается как один из лучших способов путешествия человека на Марс. Все, что вы хотели бы узнать об этом - в новой статье «Поднять паруса!».

Поднять паруса!

Солнечный парус - путь к звездам

Все с детства знают, что то-то и то-то невозможно. Но всегда находится невежда, который этого не знает. Он-то и делает открытие.

Альберт Эйнштейн

Парус - простейшее устройство, сотни лет исправно служившее людям. Земля осваивалась именно под парусами. Но в конце 19 века они уступили место сначала паровым машинам, затем - дизельным двигателям, а позже на службу человеку встали космические ракеты и атомная энергия. Казалось бы, парусные корабли навсегда “уплыли” в область спорта, отдыха богачей, дорогих исторических фильмов и авантюрных морских романов.

Как говорил Рабинович в известном анекдоте: “Не дождетесь!”. Ведущие специалисты в области исследования космоса уже не один десяток лет серьезно обсуждают вопрос о применении солнечного паруса в космосе. Многие из нас слышали этот термин и примерно представляют себе принципы работы солнечного паруса. Но что такое солнечный парус при ближайшем рассмотрении? Действительно ли он эффективнее химических ракетных двигателей?

Автора!

Почти 400 лет назад выдающийся немецкий астроном Иоганн Кеплер (1571-1630), наблюдая кометы, установил, что их хвосты постоянно направлены в сторону, противоположную от Солнца. Трактат “О кометах”, опубликованный им в 1619 году, объяснял это явление воздействием солнечного света (идея по тем временам не только бредовая, но и откровенно опасная). Так или иначе, Кеплер был первым, кто предположил, что солнечный свет оказывает давление на хвосты комет.

На протяжении нескольких последующих столетий космосом интересовались лишь астрономы, шарлатаны и шизофреники, причем первые исследовали его чисто академически - лететь туда они не собирались, а остальные уж и подавно не могли придумать способа использовать солнечный свет для путешествий к другим планетам.

Теория давления света в рамках классической электродинамики была выдвинута Джеймсом Кларком Максвеллом в 1873 году, который связал это явление с передачей импульса электромагнитного поля веществу.

Так уж сложилось - западные ученые в наше время крайне неохотно вспоминают о том, что некоторые великие научные открытия были сделаны в России. Они совершенно не связывают изобретение радио с Поповым, а лампочка накаливания никак не ассоциируется у них с Лодыгиным. Однако все без исключения исследователи признают, что пионерами в области разработок космического паруса являются наши соотечественники.

Так, давление света на твердые тела было впервые исследовано Петром Николаевичем Лебедевым (1866-1912) в 1899 году. В его опытах использовался вакуумированный (~10 в минус четвертой степени миллиметров ртутного столба) стеклянный сосуд, где на тонкой серебряной нити были подвешены коромысла крутильных весов с закрепленными на них тонкими дисками-крылышками из слюды (они-то и подвергались облучению). Именно Лебедев экспериментально подтвердил справедливость теории Максвелла о давлении света.

Солнечный парус как таковой был изобретен другим русским ученым - Фридрихом Артуровичем Цандером (1887 - 1933). Он впервые рассмотрел несколько конструкций этого устройства, наиболее целесообразная из которых была подробно описана им в 1924 году в неопубликованном варианте статьи “Перелеты на другие планеты”.

Солнечный парус, по замыслу ученого, должен был иметь площадь в 1 квадратный километр при толщине экрана 0,01 миллиметра и массу 300 килограммов. Парус должен был иметь центральную ось и некоторый набор силовых элементов, поддерживающих его форму. Цандер отмечал, что толщина экрана может быть еще меньше, так как Эдисону удалось изготовить никелевые листы толщиной 0,001 миллиметра и размером 3200 квадратных метров.

Ученый также попытался разработать основы теории движения космических аппаратов под солнечным парусом. Он считал целесообразным направлять на солнечный парус космического аппарата поток света, собранный вторым парусом, расположенным на некоторой промежуточной межпланетной станции. Эта его идея перекликается с современными предложениями об использовании для разгона космического аппарата искусственного лучистого (лазерного) ветра, обеспечивающего существенно большее давление на поверхность, чем солнечные лучи.

Это нтересно:
  • Кто изобрел парус, точно неизвестно. Однако 6000 лет назад египтяне уже уверенно пользовали прямой парус, плавая по Нилу.
  • Клипер “Проссейн”, построенный в начале 20 века гамбургской компанией “Лаэш”, имел самую большую в мире площадь парусов - 6500 кв. м.
  • Самые быстрые парусники в истории человечества - чайные клипера (конец 19 века) развивали скорость до 20 узлов (37 км/ч)
  • В теории космический парусник может разгоняться до 30% от скорости света и даже выше.
  • Давление солнечного света на орбите Земли составляет 9.12 µN/m 2 (меньше веса муравья).
  • “Солнечный парус” появился во втором эпизоде “Звездных войн” (“Звездные войны 2: Атака клонов”) на корабле графа Дуку (он же Саруман, он же Кристофер Ли).

Что мы имеем?

Некоторые источники называют солнечный парус “световым” - чаще всего это происходит в тех случаях, когда в качестве источника света предлагается использовать не Солнце, а, например, лазер.

Принцип работы этого устройства прост до безобразия - космический корабль разворачивает большое полотно - парус, который либо отражает, либо поглощает (рассматриваются варианты и с черным парусом) фотоны света.

На орбите Земли (1 астрономическая единица расстояния от Солнца) парус массой 0,8 г/м 2 испытывает примерно такое же по силе воздействие солнечного света. Давление обратно пропорционально квадрату расстояния от Солнца. Заметим, что парус может быть гораздо тяжелее - и все равно он останется более-менее функциональным, хотя и не сможет самостоятельно раскрываться под действием солнечного ветра (придется разворачивать его механическим путем).

Главным неудобством солнечного паруса является то, что он может двигать корабль лишь в сторону от Солнца, а не к нему. Иногда высказывается мнение, что полет в направлении Солнца возможен, если идти галсами (здесь очевидна аналогия с зигзагообразным движением морского парусника против ветра). Изменяя угол наклона солнечного паруса относительно падающего на него света, можно легко управлять космическим кораблем, сколь угодно часто меняя его траекторию (удовольствие, недоступное для ракетных двигателей).

Основное и самое главное достоинство “парусного” способа перемещения в космическом пространстве - полное отсутствие топливных затрат. Альтернатив современным химическим ракетам на околоземном пространстве пока нет - они сравнительно дешевы и способны вывести на орбиту грузы в сотни тонн.

Однако когда речь заходит о межпланетных путешествиях, преимущества химических ракет заканчиваются. Они попросту не способны обеспечить кораблю постоянное ускорение (а, следовательно, сообщить ему как можно более высокую скорость) - ведь, по сути, свыше 90% их массы составляет стремительно расходуемое горючее. По самым скромным расчетам, для путешествия на Марс понадобится 900 тонн топлива - и это при том, что масса полезной нагрузки будет примерно в 10 раз меньше. Про ракеты еще говорят - “топливо везет само себя”.

На первый взгляд, космический парус очень медлителен. Да, действительно, начальные этапы его разгона будут напоминать гонки черепах. Однако не следует забывать, что ускорение действует постоянно (для паруса массой 0,8 г/м 2 начальное ускорение будет равно 1,2 мм/с 2). В условиях безвоздушного пространства это позволит достичь огромных скоростей за весьма короткие сроки.

К сожалению, обсуждение перспектив использования солнечного паруса в космосе не касается одного очень важного вопроса - как будет осуществляться торможение корабля на таких гигантских скоростях? Для межзвездных экспедиций ответ есть - за счет использования солнечного паруса, развернутого в противоположную сторону (однако это существенно увеличит время полета). А как быть с путешествием, допустим, на Марс? Везти с собой ракетное топливо неэффективно, а использование новых типов двигателей (например, разрабатываемых в настоящее время ионных) пока находится под вопросом.

Материя и форма

Материал, из которого сделаны солнечные паруса, должен быть максимально легким и прочным. В настоящее время наиболее перспективными являются полимерные пленки - милар и каптон (толщиной 5 микрон), алюминизированные (тончайший слой металла в 100 нанометров) с одной стороны, что придает им отражающую способность до 90%.

Здесь есть свои сложности. Милар очень дешев и легкодоступен (чуть более толстые пленки имеются в открытой продаже), но непригоден для длительного применения в космосе, так как разрушается под воздействием ультрафиолетового излучения. Каптон более устойчив, однако минимальная толщина такой пленки - 8 микрон, и это уменьшает ходовые качества такого паруса.

В настоящее время ученые надеются на развитие нанотехнологий - с их помощью можно будет создать легчайший и сверхэффективный солнечный парус из углеродных нанотрубок.

Форма (конструкция) парусов имеет едва ли не большее значение, чем материал, из которого они сделаны.

Самый простой и надежный (но более тяжелый, а, следовательно - не слишком быстрый) солнечный парус имеет каркасную конструкцию. Больше всего он напоминает воздушного змея - легкая крестообразная рама является несущей основой для четырех треугольных парусов, надежно закрепленных на ней. Форма каркаса может быть разной - даже круглой. Очевидное преимущество такой конструкции заключается в надежной фиксации парусов - они не смогут свернуться и ими легко управлять (поворачивать под разным углом к свету).

Существуют проекты парусов, не имеющих каркаса - так называемая “вращающаяся конструкция”. Эти модели выполнены в виде лент, закрепленных на космическом аппарате. Как следует из названия, раскрытие парусов этого типа обеспечивается вращением корабля вокруг своей оси. Центробежные силы (на концах лент закреплен небольшой груз) вытягивают их в разные стороны, позволяя обойтись без тяжелого каркаса. Теоретически, такая конструкция обеспечивает более высокую скорость передвижения в космосе, чем каркасная, за счет своего малого веса.

Таковы основные варианты строения солнечного паруса. Предлагаются также и другие модели, например - полотна, свободно парящие в космосе и прикрепленные к кораблю при помощи тросов. Это - своеобразный “гоночный” вариант парусов - при всех их скоростных преимуществах они ненадежны и сложны в управлении.

Еще один вариант (хотя некоторые исследователи и склонны выводить его в отдельный класс транспортных средств будущего) - это так называемый “плазменный парус”.

Плазменные паруса будут представлять собой миниатюрную модель магнитного поля Земли. Точно так же, как наше магнитное поле прогибается под напором солнечного ветра, магнитное поле (диаметром 15-20 километров), окружающее космический корабль, будет отступать под давлением заряженных частиц.

Что день грядущий нам готовит?

9 августа прошлого года японский институт космонавтики (ISAS) произвел запуск и развертывание двух полноценных солнечных парусов на низких орбитах (122 и 169 км.).

Но страна восходящего солнца не стала первой в области испытаний солнечных парусов. Пальма первенства (с некоторыми оговорками) опять принадлежит России - 4 февраля 1993 года был проведен эксперимент “Знамя-2” с развертыванием 20-метровой тонкопленочной конструкции за счет использования центробежных сил на борту корабля “Прогресс М-15”, пристыкованного к орбитальной станции “Мир”.

Почему это первенство с оговорками? Дело в том, что основной задачей эксперимента было не испытание тяговых качеств этого полотна, а освещение участка земной поверхности отраженным светом - еще одна вполне реальная функция солнечных парусов.

На эту весну (предположительные сроки - нынешний месяц) был запланирован кластерный (на одной ракете класса “Днепр”) запуск спутников АКС-1 и АКС-2 компании “Космотранс”. Каждый из них весит около двух килограммов (контейнер 30х30х40 см.) и несет в себе солнечный парус размером с теннисный корт (толщина - 2 микрометра).

На поверхности пленки будут смонтированы позолоченные сенсоры, регистрирующие динамику распределения зарядов по площади паруса над сейсмоопасными районами Земли.

Помимо испытаний ходовых качеств космических парусников, предполагается провести ряд экспериментов по сверхчувствительному зондированию земной поверхности (предсказание землетрясений) и освещению ее пятном света диаметром в пять километров. Спутники будут выведены на 800-километровую орбиту и смогут находиться там на протяжении нескольких столетий.

Словом - если посмотреть на состояние дел в области развития космоплавания (Циолковский, кстати, называл космонавтику именно так), то освоение ближайших планет солнечной системы перестает быть научной фантастикой. В настоящее время солнечный парус - самый перспективное устройство для передвижения в космосе, имеющее целый ряд преимуществ перед химическими ракетными двигателями. Кто знает, может быть, через 20-30 лет мы с вами сможем купить билет на космический парусник и полететь в отпуск на Марс?

Как почитать?

“Солнечный ветер” , Артур Кларк - рассказ (и одноименная антология) о гонке космических парусников.

“Мошка в зенице Господней” , Ларри Нивен, Джерри Пурнелл - в книге показан инопланетный корабль, приводимый в движение при помощи солнечного паруса и лазера.

“Мир Роша” , Роберт Лалл Форвард - цикл романов, в котором описывается межзвездное путешествие на солнечном парусе, освещаемом лазером.

“Путь на Амальтею” , “Стажер” , А. Стругацкий, Б. Стругацкий - описан космический грузовик “Тахмасиб”, оснащенный генератором фотонов на термоядерной плазме и 750-метровым отражателем.

Идея о том, что свет может оказывать давление, приписывается Иоганну Кеплеру – на такую мысль его навели в 1619 году развевающиеся хвосты комет при движении по околосолнечной орбите. В 1873 году Джеймс Максвелл, исходя из своей электромагнитной теории света, теоретически оценил величину этого давления, а в 1900 году наш соотечественник – знаменитый физик Петр Лебедев – сумел экспериментально обнаружить и измерить силу светового давления. Первыми решили использовать солнечную тягу россияне – о солнечном парусе еще в 1913 году написал фантаст Борис Красногорский. В его романе «По волнам эфира» корабль «Победитель пространства» передвигался в космосе, используя солнечный свет и кольцевое зеркало из тончайших листов отполированного металла. А в середине 1920-х, тоже в России, за эту идею взялся ученый и изобретатель Фридрих Цандер, один из основоположников теории космических полетов и реактивных двигателей. В 1924 году он подал в Комитет по изобретениям авторскую заявку на космический самолет, который для передвижения в межпланетном пространстве использовал бы огромные и очень тонкие зеркала.


Тогда эту идею никто не воспринял всерьез – подходящих материалов и технологий просто не существовало. Но в 1960-х годах к солнечным парусам вновь вернулись фантасты (известный пример – рассказ Артура Кларка «Солнечный ветер»), а затем и инженеры. В 1970-х солнечный парус вполне серьезно рассматривался NASA как один из вариантов двигателя для зонда, отправляющегося на рандеву с кометой Галлея. От этой идеи по разным причинам отказались, но ее не забыли.
В 2000 году в НПО им. Лавочкина и Институте космических исследований (ИКИ) РАН начались работы по программе КАСП (Космический аппарат «Солнечный парус»). Спонсировали проект Планетарное общество США, учрежденное в 1980-м тремя учеными – профессором Калтеха Брюсом Мюрреем, сотрудником JPL Луисом Фридманом и астрономом и писателем Карлом Саганом, и общественная организация Cosmos Studios, руководит которой Энн Друян – вдова Карла Сагана. Солнечный парус – это тонкая, 5 микрон толщиной, полиэфирная пленка, с «солнечной» стороны покрытая субмикронным слоем алюминия (коэффициент отражения 0,85). «Такая пленка достаточно прочна, но стоит ее повредить, например, микрометеоритом – и разрыв сразу же ползет по всей поверхности, – рассказал «Популярной механике» российский руководитель проекта Виктор Кудряшов. – Чтобы пленка не рвалась, ее армируют. В нашем случае полотно паруса было усилено узкими полосками специальной ленты, которая останавливает разрывы, не позволяя им ‘ползти’ через весь парус».
Среди возможных конструкций паруса в НПО им. Лавочкина остановились на 8-лепестковом «цветке». Каждый треугольный лепесток площадью 75 квадратных метров должен был разворачиваться и поддерживаться специальным пневмокаркасом, который приобретает жесткость после наполнения азотом. В сложенном виде лепесток помещается в контейнер размером с кирпич – сначала его вакуумируют, удаляя оставшийся воздух, а затем многократно сворачивают по специально разработанной схеме укладки. В раскрытом состоянии космический парусник представляет собой небольшую (1 м длиной) платформу, из которой «растут» 8 треугольных лепестков. «Для космического аппарата с солнечным парусом полет по околоземной орбите имеет свои особенности. В различные моменты времени он может быть освещен Солнцем или находиться в тени Земли. Для организации управления аппаратом планировалось, в частности, поворачивать лепестки паруса вокруг оси каждого из них», – говорит Виктор Кудряшов.
Зачем нужны солнечные паруса? Ведь их тяга очень мала (давление солнечного света на уровне земной орбиты на идеально отражающее зеркало площадью 1000 м 2 составляет всего 10 мН) и несравнима с мощными реактивными двигателями. Впрочем, двигатели на химическом горючем могут работать сотни секунд, плазменные двигатели – тысячи часов, и те и другие ограничены запасом рабочего тела. А вот паруса могут давать тягу, пока их поверхность освещена Солнцем (по прогнозам астрономов, это будет продолжаться еще около 5 миллиардов лет), и при этом не расходуется ни энергия, ни рабочее тело. Поэтому перед солнечными парусами открываются блестящие перспективы. К сожалению, полет солнечного парусника с экипажем на борту – пока дело отдаленного будущего. Но автоматические станции, оснащенные таким двигателем, – реальность ближайшего времени. Парусные аппараты вполне серьезно рассматриваются как зонды для полета к внутренним планетам Солнечной системы, к Плутону, к некоторым астероидам и кометам. Для продвижения ближе к границам Солнечной системы, где интенсивность солнечного света существенно снижается, уже появляются фантастические проекты орбитальных лазеров, «подталкивающих» парус.


На сегодняшний день космический аппарат с солнечным парусом способен решать не только научные задачи. Одним из его реальных прикладных применений может стать проект НПО им. Лавочкина и ИКИ РАН «Солнечная погода». Речь идет о 30-килограммовой космической обсерватории для наблюдения за Солнцем и предсказания магнитных бурь, размещаемой на расстоянии, например, три миллиона километров на линии Земля–Солнце. Это в два раза ближе к Солнцу, чем точка либрации (то есть гравитационного равновесия), в которой висит европейско-американская солнечная обсерватория SOHO. Используя парус площадью в 1000 квадратных метров, «Солнечная погода» будет компенсировать увеличение притяжения Солнца – это даст возможность предупреждать о магнитной буре за большее время, чем сейчас.
Российскому солнечному парусу не повезло – на 83-й секунде полета в работе первой ступени «Волны» произошел сбой и ракета рухнула в море (такая же судьба постигла и прототип, тоже выводимый «Волной» – в 2001 году он должен был продемонстрировать возможность раскрытия двух «лепестков»). Однако директор проекта и исполнительный директор Планетарного общества США Луис Фридман не намерен бросать идею: «Случаются и неудачи. Но сразу после падения Cosmos-1 я начал получать сообщения от ученых, инженеров и просто энтузиастов, и все в один голос говорили: ‘Давайте сделаем еще один солнечный парус и запустим его!’. Это вполне совпадает с нашими собственными планами. Конечно, скорее всего, ракету-носитель придется сменить, и мы сейчас рассматриваем два возможных варианта – ‘Союз-Фрегат’ и ‘Космос-3М’. Остается только найти средства – весь проект будет стоить около $4 млн.». Но в настоящее время, по сообщениям официального сайта НПО им. Лавочкина, проект нового солнечного паруса, к сожалению, заморожен.

Конструкция "солнечного паруса" Космос-1


Космический аппарат с солнечным парусом (КАСП), на котором снаружи установлены специальным образом сложенные лепестки паруса, невелик - примерно 1 метр длиной и 100 кг весом, но это не мешает ему иметь в своем составе все необходимые для работы самого аппарата и паруса системы. Основой конструкции КАСП является приборная платформа, на которой крепится разгонная двигательная установка, 4 панели солнечных батарей, служебная аппаратура, фото- и телекамеры, антенны, и - самое главное- блок солнечных парусов. В сложенном виде каждый из 8 лепестков представляет собой небольшую упаковку 30 см х 20 см х 20см. Эти 8 упаковок расположены в двух плоскостях - по 4 в каждой. Развертывание лепестков происходит в два этапа: сначала раскрываются 4 лепестка, лежащие в одной плоскости, а затем - 4 лепестка, лежащие в другой. Каждый лепесток в развернутом виде представляет собой равнобедренный треугольник, расширяющийся от продольной оси аппарата к периферии. Эти 8 лепестков расположены таким образом, что после развертывания всех восьми, они образуют практически окружность диаметром около 30 м и площадью 600 квадратных метров.


Изготовлены лепестки солнечного паруса из полимерной пленки толщиной 5 мкм, которая с одной стороны (обращенной к Солнцу) металлизирована. По двум длинным сторонам каждого лепестка проложен пневмокаркас, который представляет собой полую трубку диаметром 15см и сделан также из полимерного материала, но толщиной не 5, а 20 мкм. Каркас необходим для организации процесса развертывания каждого лепестка (внутрь трубки по команде на раскрытие паруса подается сжатый азот и постепенно разворачивающиеся трубки и растягивают тонкие лепестки) и создания жесткости каждой из частей паруса. Каждый лепесток имеет возможность поворачиваться вокруг оси крепления на заданный угол. Тягу солнечному парусу обеспечивают фотоны. При поглощении или отражении от солнечного паруса они передают свой импульс (в первом случае одинарный, во втором – двойной) космическому аппарату. Именно свет, а не солнечный ветер (в отличие от парусных судов, движимых ветром) и толкает космический парус. Солнечный ветер – это поток плазмы, относительно медленных (300–700 км/с) заряженных частиц, в основном протонов и электронов (встречаются ядра гелия и даже ионы более тяжелых элементов), связанных собственным магнитным полем. Солнечный ветер берет свое начало в короне и «дует» к границам Солнечной системы. Взаимодействуя с магнитным полем Земли, он вызывает северное сияние, с кометами – приводит к образованию их плазменных или ионных хвостов. Хотя солнечный ветер нельзя «запрячь» в паруса космических аппаратов из-за его крайней разреженности (давление примерно в тысячу раз меньше светового), любопытно, что именно он подсказал такой способ передвижения в космосе: в XVII веке Иоганн Кеплер в результате наблюдений за хвостами комет предположил, что парусные корабли смогут передвигаться в небесах.

Электрический солнечный парус, разработанный два года назад в Финнском метеорологическом институте, быстро движется от изобретения к практическому внедрению. Электрическая парусная тяга может оказать огромное влияние на космические исследования и путешествия по всей солнечной системе.

Изобретенный д-ром Пеккой Януненом (Pekka Janhunen) электрический парус, работающий на силе солнечного ветра, может привести к революции в космических путешествиях. В качестве источника тяги парус использует...

Пресс-служба NASA сообщила о том, что на орбиту Земли успешно выведен уникальный наноспутник, оснащенный солнечным парусом.

Для реализации проекта был запущен миниатюрный аппарат FASTSAT. Внутри него скрыта система P-POD, при помощи которой в космос был выброшен еще более компактный спутник NanoSail-D. Впервые в истории подобный аппарат был доставлен на орбиту более крупным спутником, а не ракетой.

Японское космическое агентство (JAXA) планирует 18 мая 2010 года запустить в космос спутник, движущийся за счет солнечного паруса.

Аппарат получил название Ikaros (сокращение от Interplanetary Kite-craft Accelerated by Radiation of the Sun - межпланетный парусный аппарат, движущийся за счет солнечного излучения).

Название спутника также является слегка искаженным именем героя античных мифов Икара (по-английски он пишется Icarus), который, надев сделанные его отцом крылья, попытался...

Японский экспериментальный космический парусник «Икар» за шесть последних месяцев набрал благодаря своему парусу, «работающему» за счет давления солнечного света, дополнительно 100 метров в секунду, или 360 километров в час, сообщает японское космическое агентство JAXA. Аппарат был запущен 21 мая 2010 года одновременно с исследовательским зондом «Акацуки», и они вдвоем отправились к Венере. В начале лета «Икар» начал раскручиваться и разворачивать свой парус: 14-метровое квадратное мембранное...

Запуск японской ракеты-носителя, на борту которой находятся спутник с солнечным парусом, движущийся за счет солнечного ветра, и аппарат для изучения Венеры, перенесен на 21 мая.

Изначально планировалось, что старт ракеты-носителя H-IIA состоится 18 числа, однако он был отменен из-за плохой погоды на космодроме Танегасима (Tanegashima). Новое время запуска - 21 мая, 01:58 по московскому времени.

Аппарат для изучения Венеры получил название "Акацуки" (в переводе с японского этого слово...

Группа космических аппаратов теоретически способна заставить астероид изменить направление движения, заслонив его от Солнца, считают специалисты из французского Национального центра космических исследований (CNES). Их идея, предполагающая запуск аппаратов, работающих по принципу «солнечного паруса» к астероиду Апофис, была озвучена на симпозиуме, прошедшем в Нью-Йоркском технологическом колледже.

Астероид Апофис был обнаружен в 2004 году. По расчётам астрономов, в 2029 году он должен пройти...

Солнечное затмение - это нечастое явление, которое в астрологии считается негативным. Ограничений и предостережений в эти дни значительно больше, чем обычно.

Новолуние, которое всегда сопровождает это событие, тоже произойдет в Знаке Рака, что добавит проблем. Еще этот день - пятница 13, что также не сулит нам ничего хорошего. Таким образом, позитивных моментов грядущего затмения почти не будет, зато опасностей...

Солнечные и лунные затмения играют значительную роль в астрологических прогнозах. Дни затмений нередко отмечены в исторических хрониках событиями, которые перевернули ход истории. 2019 год начнется с затмения Солнца. Астрологи расскажут, как провести этот день и не столкнуться с неприятностями.

2019 год, с точки зрения астрологов, будет богат на события, причем долго ждать их не придется. Например, с 1 января начинается звездопад Квадрантиды, пик которого придется на 4 число, а 6 января...

» (поток фотонов , именно он используется солнечным парусом) и «солнечный ветер » (поток элементарных частиц и ионов, который предполагается использовать для полётов на электрическом парусе - другой разновидности космического паруса).

Давление солнечного света чрезвычайно мало (на Земной орбите - около 5·10 −6 Н/м 2 ) и уменьшается пропорционально квадрату расстояния от Солнца . Однако солнечный парус совсем не требует ракетного топлива , и может действовать в течение почти неограниченного периода времени, поэтому в некоторых случаях его использование может быть привлекательно. Эффект солнечного паруса использовался несколько раз для проведения малых коррекций орбиты космических аппаратов, в роли паруса использовались солнечные батареи или радиаторы системы терморегуляции. Однако на сегодня ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя .

Солнечный парус в проектах звездолётов

Солнечный парус - самый перспективный и реалистичный на сегодня вариант звездолёта .

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволит увеличить полезную нагрузку по сравнению с космическим кораблем на реактивном движении.

Недостатком солнечного парусника является тот факт, что за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида. Данный проект ставит проблему точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Уже сейчас можно построить межзвёздный зонд, использующий давление солнечного ветра.

Существует 2 варианта солнечных парусников: на давлении электромагнитных волн и на потоке частиц.

Космическая регата

Солнечный парус диаметром 20 метров, разработанный в НАСА

Толщина солнечного паруса

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс. Его идея заключалась в выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к Марсу. Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако, солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА , и получил первую премию конкурса .

Космические аппараты, использующие солнечный парус

Схема стабилизации космического аппарата

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса .

Первое развёртывание солнечного паруса

Первое развёртывание солнечного паруса в космосе было произведено на российском корабле «Прогресс» 4 февраля 1993 года в рамках проекта «Знамя» .

См. также

  • Космический парус
    • Магнитный парус

Примечания

Ссылки

  • Консорциум «Космическая регата» - Проекты - Солнечные паруса и рефлекторы

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Солнечный парус" в других словарях:

    Устройство (напр., в виде металлизированной пленки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Большой Энциклопедический словарь

    Устройство (например, в виде металлизированной плёнки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Энциклопедический словарь

    Солнечный парус - (тент) использовался летом в амфитеатрах для защиты от солнца во время многочасовых представлений. Надписи на стенах в Помпее, возвещающие о таких представлениях, снабжались особой пометкой: vela erunt имеется С. п. Археологами обнаружены … Словарь античности

    солнечный парус - Light Sailor Световой (солнечный) парус Система приведения в движение космического корабля, которая получает толчок от давления света, падающего на тонкую металлическую плёнку … Толковый англо-русский словарь по нанотехнологии. - М.

    Один из возможных движителей космического летательного аппарата (КЛА); представляет собой устанавливаемую на КЛА и развёртываемую в полёте непрозрачную плёнку (например, металлизированная полимерная) большой площади, способную сообщить… … Большая советская энциклопедия

    Солнечный парус - тент, использов. летом в амфитеатрах для защиты от солнца во время многочас. представл. Надписи на стенах в Помпее, возвещ. о таких представл., снабжались особой пометкой: имеется С. п. Археологами обнаруж. спец. конструкции для натягив … Древний мир. Энциклопедический словарь

    солнечный парус - Устройство в виде, например, металлизированной плёнки большой площади, служащее для перемещения в космосе объекта (тела) под действием светового давления солнечных лучей. В современной космонавтике это пока единственный нереактивный двигатель. E … Толковый уфологический словарь с эквивалентами на английском и немецком языках

    Космос 1 Cosmos 1 Космос 1 (компьютерная модель) Производитель … Википедия

    У этого термина существуют и другие значения, см. Парус (значения). Парусное судно Парус ткань или пластина, прикрепляемая к средству передвижения и преобразующая энергию ветра в энергию поступательного движения … Википедия

    Форма двигателя для космического аппарата, использующая в качестве источника тяги импульс ионов солнечного ветра. Придуман в 2006 году доктором финского метеорологического института Пекка Янхуненым Власти Евросоюза проявляют повышеный интерес … Википедия

Книги

  • Солнечный парус. Фантастика или реальность космоплавания? С дополнениями. Solar Sail Motion in Near-Sun Regions. Русско-английский путеводитель по современной терминологии , Е. Н. Поляхова, В. В. Коблик. В настоящей книге отражены основные динамические принципы современной теории космоплавания, т. е. полета в космосе под солнечным парусом, движущимся под действием светового давления солнечных…

Научно-исследовательская работа

На тему

«Солнечный парус»

Выполнил:

Швец Николай Игоревич

Ученик 10 класса

МБОУ «СОШ №25»

Г. Тулун

Научный руководитель:

учитель физики

Татарникова Надежда Михайловна

ОГЛАВЛЕНИЕ

Введение………………………………………………………………………….3

Солнечный парус………………………………………………………………………………3

Область применения солнечного паруса……………………………………………………………………………..4

Конструкция СП…………………………………………………………………………...…….6

Расчет времени разгона, необходимого

для выхода из сферы притяжения земли……………………………………………………………………...……….8

МОБ(межорбитальный буксир) использующий СП……………………………………………………………………………...…..9

Заключение………………………………………………………………………12

Список литературы…………………………………….…………………………………13

ВВЕДЕНИЕ

Актуальность данной работы в том, что широкой публике мало что известно о солнечном парусе, эта тема поднимается очень редко, и интересна сама ее нетривиальность, не говоря уже о конкретной информации.

Целью исследования является определение эффективности использования СП в областях науки и техники, а так же сравнение эффективности СП с эффективностью традиционных космических аппаратов, доказать что преимущество КА под солнечным парусом по сравнению с КА на ракетном двигателе заключается в более высоком КПД. Для достижения поставленной цели, были определены следующие задачи исследования:

1. Рассмотреть вопросы, связанные с использованием СП и современным состоянием работ в этой области.
2. Рассчитать время полета до Марса на КА с СП

3. Рассмотреть конструкцию СП на основе пневмокаркасов.
4. Ознакомиться с расчетами времени разгона КА под солнечным парусом с круговой орбиты до второй космической скорости.
5. Предложить схему разгона МОБ под солнечным парусом с использованием вспомогательных орбитальных КА.

СОЛНЕЧНЫЙ ПАРУС

Идея солнечного паруса (СП), использующего в качестве движущей силы давление солнечного света не нова. Она впервые возникла в 20-х годах и в течение десятков лет рассматривалась различными авиа и космическими организациями. Наш соотечественник Ф. А. Цандер, известный своими многочисленными трудами в области космонавтики, предложил выводить на орбиту космические зеркала (отражатели) передающие световую энергию Солнца на поверхность Земли для непосредственного использования. Дальнейшее освоение космического пространства, осуществление межпланетных перелетов, вынуждает конструкторов искать принципиально новые решения в построении космических кораблей. Одним из вариантов межпланетного космического корабля является солнечный парус. Плюс солнечного паруса по сравнению с лазерным парусом - солнечный парус не зависит от источника света, а минус - солнечный свет слабее, чем лазерный свет. СП не расходует топливо для разгона; в космосе паруса наполняет не ветер, а давление частиц солнечного света - фотонов. Оно заставляет

парусник непрерывно разгоняться (или тормозить). КА с солнечным парусом будет ускоряться очень не спеша, но со временем сможет достичь невиданных скоростей. Давление фотонов достаточно велико, чтобы КА мог путешествовать между планетами - от Меркурия до Юпитера; для преодоления еще больших расстояний на парус можно направить лазерный луч, запитываемый опять-таки солнечной энергией. Аспекты приложения технологии СП достаточно широки: от удержания спутников в точке стояния на геостационарной орбите до дальних шаттлов, несущих грузы между планетами, астероидами и кометами. Подлетая близко к Солнцу, парусники будущего смогут разгоняться до огромных скоростей, что позволит им сближаться с любым объектом Солнечной системы или, как уже говорилось выше, летать к звездам. Выгоды СП огромны: в сообщении студии «Космос» говорится, что парусник теоретически может летать в 10 раз быстрее, чем станции Уоуадег-1 и -2, которые достигли третьей космической скорости.

ОБЛАСТЬ ПРИМЕНЕНИЯ СОЛНЕЧНОГО ПАРУСА

Область применения солнечного паруса и солнечного парусного корабля огромна. Они могут использоваться для:
- обнаружения геомагнитных бурь,
- исследования нашей Солнечной системы,
- ретрансляции энергии, теле и радиосвязи,
- освещения отдельных районов Земли,
- очистки космоса от технологического «мусора»,
- межпланетных перелетов под солнечным парусом,
- создания крупных антенн в космосе для разведки полезных ископаемых и других полезных задач.

Солнечный парус и солнечный парусный корабль - прогрессивное направление Российской и мировой космонавтики. Его можно использовать в системах обнаружения плазменных штормов. Известно, что геомагнетические штормы могут быть причиной потери космических кораблей, сбоев в GPS (глобальная система позиционирования) сигналов, и даже сбоев наземных электрических сетей. Протоны с высокой энергией даже могут быть летальными для астронавтов, которые находятся в открытом космосе. Точное предсказание таких событий может быть сделано с помощью наблюдения за солнечным ветром. Такое наблюдение может быть осуществлено с помощью магнетометров и детекторов частиц на борту корабля, находящегося между Солнцем и Землей. Это можно сделать с помощью солнечного парусного корабля. Кроме того, СП можно использовать для межпланетных перелетов. Так, при полете к Марсу корабль выводится сначала ракетой - носителем на начальную низкую околоземную орбиту высотой около 200 км. Затем при помощи блока он переводится на стартовую орбиту высотой в несколько тысяч километров.

Продолжительность этих операций составит около 48 ч, после чего производится развертывание парусов, и под действием солнечного света корабль начинает разгон по спиральной траектории. Управляя ориентацией паруса, добиваются превращения орбиты в эллиптическую с постоянно возрастающим апогеем. Было рассчитано, что длительность разгона к Луне в этом случае составит около 120 суток. Время старта, а затем разгона выбирается так, чтобы парусник вышел в заданную область гравитационного поля Луны. Это позволит решить следующую задачу - перевести СПК на траекторию межпланетного полета к Марсу. Взаимное расположение Земли и Марса на этом этапе тоже подбирается так, чтобы вначале уменьшить период гелиоцентрической орбиты («торможение»), а затем афелий орбиты увеличить, чтобы достичь орбиты Марса («разгон»). Суммарное время, требуемое СПК для достижения Марса, составит около 1,9 года.

Обозначим давление света на орбите Земли Pо. Известно, что давление света меняется с расстоянием по закону: P ~ 1/R2. Найдем давление света посередине расстояния между Землей и Марсом: P 1/2 = Po (Rз/0.5(Rз+Rм)) 1/2 . Здесь Rз – радиус орбиты Земли = 1.5* 10 11 м, Rм – радиус орбиты Марса = 2.28 *10 11 м. Для простоты будем считать, что в течение времени движения космического аппарата от Земли до Марса Земля и Марс находятся на одной прямой, проведенной из центра Солнца. На самом деле это, конечно, не так. Будем считать, что на всем пути от Земли до Марса на парус действует постоянное давление света, равное P1/2 . Пусть площадь паруса равна S. Тогда сила, действующая на парус (т.е. на космический аппарат) F =P1/2 S. Из второго закона Ньютона найдем ускорение, с которым будет двигаться космический аппарат массы M: a = F/M = P1/2 S/M. Используя известное соотношение из курса физики (Механика) s = at2/2, где s – пройденный путь за время t (в нашем случае s= Rм – Rз) найдем время движения космического аппарата от Земли до Марса под действием давления солнечного света:

t = (2 (R м - R з)/ (P 1/2 S /M )) 1/2 = (2 (2,28*10 11 – 1,5*10 11)/0,0000045*10) 1/2 = 5887406с ~1,9 года

КОНСТРУКЦИЯ СП

Роторный солнечный парус состоит из восьми лопастей. Каждая в раскрытом виде представляет собой мембрану, натянутую на пневмокаркас трубчатого сечения диаметром 150 мм, изготовленный из полиэтишертерафталатной пленки толщиной 20 мкм и погонной массой 28 г/м2. Площадь натянутой на каркас мембраны 75 м2. Она изготовлена из металлизированной с одной стороны полиэтилтертерафталатной плёнки толщиной 5мкм и погонной массой 7 г/м2. Металлизированная поверхность мембраны обращена к Солнцу. Пневмокаркас служит для организации процесса развертывания лопасти СП, поддержания заданной формы и обеспечения жесткости при передаче сил и моментов от давления солнечного ветра на лопасть. Жесткость пневмокаркаса и его устойчивость обеспечивается остаточным давлением рабочего газа (азота) внутри пневмокаркаса, составляющим около 7000 Па. Лопасть развертывается из рулона и приобретает форму при срабатывании пирозамков.



Схема запуска солнечного паруса

на примере cosmos -1

Аппарат с СП, наряду с разгонной двигательной установкой (РДУ) и защитным кожухом, входит в состав головного блока (ГБ) ракеты-носителя. Конструктивная основа КАСП - приборная платформа, на которой крепятся РДУ с смонтированной на ней системой отделения, защитный кожух, блок парусов, приборное оборудование и служебные системы. Приборная платформа устанавливается на адаптер (раму) РН и соединяется с ним пирозамками. На ее герметичном днище размещаются узлы крепления РДУ, антенна 400 МГц, антенна GPS, антенны S-диапазона, солнечные датчики, две фотокамеры, газовые сопла системы ориентации и стабилизации, а также панели фотоэлектрических преобразователей. На оставшееся свободное пространство днища с наружной и внутренней стороны нанесены покрытия с оптическими свойствами, обеспечивающими требуемый тепловой режим. С внутренней стороны платформы размещаются радиокомплексы ДМ и S-диапазонов, приемник GPS, бортовой компьютер, датчик микроускорений, блок ДУСов, аккумуляторная батарея, два газовых баллона, ресивер и арматура СОиС. На верхнем фланце платформы установлен блок парусов - стойка, на которой размещены сборки парусов приводами, системой наполнения, механизмы фиксации и расчековки. До выведения на рабочую орбиту КАСП закрыт защитным радио-прозрачным кожухом. Масса КАСП перед включением апогейного двигателя составляет 130 кг, перед раскрытием солнечного паруса - 63.7 кг.


РАСЧЕТ ВРЕМЕНИ РАЗГОНА, НЕОБХОДИМОГО ДЛЯ ВЫХОДА ИЗ СФЕРЫ ПРИТЯЖЕНИЯ ЗЕМЛИ

В качестве примера рассмотрим разгон до параболической скорости КА, снабженного солнечным парусом при отлете с геостационарной орбиты. Пусть стартовая масса КА равна 2000 кг, площадь СП равна 10000 м2 , погонная масса материала СП = 7 г/м2 . Тогда имеем: mпар= S · СП = 10000 м2 · 7 г/м2= 70000 г = 70 кг

Полная сила, действующая на СП равна F= S · p = 10000 · 10 -5 = 0,1 H; Определим ускорение КА F = m · а;


Найдем характеристическую скорость, которую должен развить КА для выхода из сферы притяжения Земли


Вычислим время разгона


МОБ(межорбитальный буксир) ИСПОЛЬЗУЮЩИЙ СП

МОБ использующий солнечный парус - это космический аппарат нового типа с массой в несколько сотен килограммов и площадью парусов в несколько гектаров, движущихся под действием солнечного света, разгоняемый и управляемый автономно, без затрат рабочего тела двигателя. Его конструкция имеет два кольцевых бескаркасных, вращающихся в разные стороны пленочных паруса, поддерживающих свою форму под действием центробежных сил. Управляется и ориентируется корабль за счет использования гироскопических сил. Для этого корабля, осуществляющего полет в космосе, не требуется огромной энергии. Маленькие силы могут медленно и устойчиво разгонять транспортное средство до огромных скоростей. Поскольку энергия имеет массу, солнечный свет, попадающий на тонкую пленку - солнечный парус, обеспечивает такую силу. Притяжение Солнца обеспечивает другую силу. Давление света и гравитация могут носить космические корабли в любое место Солнечной системы. После ускорения в течение года солнечный парус может достичь скорости сто километров в секунду, оставляя сегодняшние ракеты далеко позади. В связи с тем, что такой корабль не может стартовать с Земли, солнечный парус необходимо строить в космосе. Хотя каркас и будет занимать огромную площадь, он (вместе с материалами) будет достаточно легок, чтобы вывести его на орбиту за 1-2 полета космического челнока. При движении по орбите вокруг Земли парус может разгонять КА только на одной половине оборота, на второй половине (встречное по отношению к Солнцу движение) оборота парус необходимо разворачивать вдоль направления солнечных лучей, чтобы избежать торможения. Данный недостаток МОБ на солнечном парусе можно избежать, если использовать дополнительные КА, которые будут собирать солнечный свет и направлять его с помощью передающей антенны на солнечный парус МОБ. Используя несколько таких вспомогательных, постоянно действующих КА с площадью приемных антенн существенно большей, чем у МОБ, можно обеспечить постоянный разгон МОБ. При одинаковом направлении исходных лучей света и сфокусированного луча передающей антенны суммарный импульс, действующий на вспомогательные КА будет равен нулю. Если же направления лучей не совпадают, то возникает необходимость использования на вспомогательных КА реактивных двигателей, например ЭРД, для компенсации неуравновешенного импульса.


Схема полета МОБ под солнечным парусом. 1- Вспомогательный КА. 2- Антенны приема солнечного излучения. 3- Передающая антенна. 4- Приемная антенна МОБ. 5- МОБ.

ЗАКЛЮЧЕНИЕ

Идея СП, за почти 100 лет своего существования претерпела определенные изменения. Перспектива в ближайшем будущем запустить высокотехнологичный межзвездный зонд на солнечном парусе со скоростью выше 0,01 с очень интригующая. Стоимость зонда на солнечных парусах на много порядков ниже чем стоимость зонда с ракетным двигателем. Теоретически, корабль с солнечным парусом способен достичь скорости в100000 км/с и даже выше. Если бы в 2010 году запустили в космос такой зонд, то (в идеальных условиях) в 2018 он догнал бы “Вояджер-1”, которому для этого путешествия потребовался бы 41 год. В настоящее время “Вояджер-1” (запущенный в 1977) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем. Это лишний раз доказывает, что космический аппарат с СП на порядок эффективнее традиционных КА.

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус – значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Возможно, самой волнующей миссией с использованием СП в ближайщее время сможет стать отправка космического аппарата, который раскроет парус вблизи орбиты Венеры или даже Меркурия, а затем отправится за пределы Солнечной системы и за несколько десятилетий достигнет гелиопаузы. Этот аппарат сможет на месте наблюдать взаимодействие солнца с галактикой. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.