На эфирных парусах: космический парусник. На всех парусах


30 мая 2015 года на орбите Земли состоится первый тест солнечного паруса LightSail-1 – приспособления, применение которого позволит в будущем совершать космические перелеты на самые дальние дистанции. Сегодня мы расскажем, что такое солнечный парус , какие у него перспективы, а также про роль знаменитого астронома Карла Сагана и российского ученого Фридриха Цандера в появлении этой идеи.

Принцип действия

Солнечный парус – это приспособление, которое использует давление солнечного света на зеркальную поверхность для приведения в движение космического аппарата.

Применение данной технологии позволит совершать даже самые длительные космические полеты, ведь для движения в межзвездном пространстве кораблю не нужно будет иметь на борту огромный запас физического топлива – источник движения будет находиться повсюду.



Конечно, чем дальше будет расстояние космического корабля с солнечным парусом от источника света, тем меньшим будет его давление. Но ведь огромные пространства Вселенной представляют собой вакуум, следовательно, не будет силы, замедляющей движение космолета. Зато даже самый слабый свет от далеких звезд будет постепенно увеличивать скорость полета.

Считается, что космический аппарат, движимый солнечным парусом достаточного размера, может развить скорость примерно в одну десятую от световой.



Существуют также идеи, предполагающие замену основного источника движения такого паруса с солнечного света на лазерный луч. Изначально предполагалось устанавливать источник этого луча на Земле, но сейчас появились куда более смелые предложения по созданию таких конструкций где-нибудь на отделенных планетах Солнечной Системы или даже на космических станциях в межзвездном пространстве. Идеальным вариантом будет развертывание целой системы лазерных установок по дороге к другим звездам. Но это – дело далекого будущего.

История

Истоки идеи солнечного парус следует искать в работах знаменитого шотландского физика Джеймса Максвелла (вторая половина девятнадцатого века), который сформулировал электромагнитную теорию света и предсказал существование давления света.



Мечты о космических кораблях, которые будут передвигаться благодаря давлению солнечного света, появились уже в конце девятнадцатого века в работах писателей-фантастов. К примеру, в романе «Необычные приключения одного русского ученого» французов Жоржа ле Фора и Анри де Графиньи идет речь об экспедиции на Венеру, во время которой для движения было использовано огромное параболическое зеркало.

По иронии судьбы именно российский ученый и разработал первую в истории реальную конструкцию летательного аппарата на солнечном парусе. Советский инженер Фридрих Цандер в 1924 году подал в Комиссию по изобретениям соответствующую заявку, но эксперты назвали ее слишком фантастической и отклонили.





На Западе идею создания солнечного паруса связывают, в первую очередь, со знаменитым астрономом, астрофизиком и популяризатором науки Карлом Саганом. Он был большим сторонником межзвездных полетов, и как ученый стал одним из самых авторитетных консультантов NASA.

Саган впервые упомянул идею солнечного паруса в 1976 году. До этого он столкнулся с проблемой невозможности дальних космических полетов при помощи летательных аппаратов на основе физического двигателя. Но солнечный парус в теории позволял выйти из данного технологического тупика.



В 1980 году Карл Саган с единомышленниками, другими знаменитыми учеными, основал Планетарное общество, целью которого значится исследование космического пространства, поиск внеземной жизни, а также поддержка направленных на это проектов. Данная организация и является одним из главных сторонников и лоббистов идеи солнечного паруса.

Попытки создания

Еще в 1974 году инженерам удалось впервые «обуздать» солнечный ветер. Произошло это в рамках запуска американской автоматической межпланетной станции Маринер-10. В качестве солнечного паруса выступили ее панели солнечных батарей. Их развернули под нужным углом к Солнцу, что позволило корректировать расположение корабля в пространстве.



Следующей конструкцией, похожей на солнечной парус, стал отражатель Знамя-2, установленный в 1993 году на орбитальной станции Мир. Но он использовался не в качестве ускорителя, а как дополнительный источник света для Земли. Эта конструкция создала на поверхности нашей планеты огромный «солнечный зайчик» диаметром 8 километров.

В дальнейшем процесс создания и развертывания солнечных парусов столкнулся с настоящим злым роком. Так, в 2005 году упала во время старта российская ракета Волна, несущая на орбиту спутник Космос-1 с солнечным парусом диаметром 30 метров.

Неудачами закончились попытки запустить солнечные паруса в 2001 и 2005 году. Ракета Falcon 1 от американской компании , стартовавшая в августе 2008, также должна была отправить на орбиту солнечный парус, NanoSail-D. Но она упала на третьей минуте полета.

Первый по-настоящему удачный запуск солнечного паруса состоялся в 2010 году в рамках японского проекта IKAROS. Японские инженеры отправили на орбиту и смогли там полностью развернуть полиамидную пленку толщиной 7,5 мкм и площадью 196 квадратных метров.



Этот солнечный парус функционировал в течение многих месяцев во время полета автоматической межпланетной станции Акацуки в сторону Венеры. Возможно, он действует и сейчас, но с 2012 года с аппаратом нет связи.

В ноябре 2010 года американская ракета Минотавр-4 вынесла на орбиту солнечный парус NanoSail-D2. Объект летал вокруг Земли в течение восьми месяцев, и многие жители нашей планеты успели увидеть его на ночном небе в виде яркой точки, плывущей по небосводу.





А дальше снова неудача. Вернее, отсутствие удачи. В январе 2015 года NASA планировало вывести на орбиту при помощи частной ракет-носителя Falcon 9 солнечный парус Sunjammer, названный в честь одноименного рассказа Артура Кларка. Он должен был стать самым большим в истории объектом подобного рода, ведь площадь его поверхности составляет около 1200 квадратных метров.



Но в ноябре 2014 года стало известно, что Американское космическое агентство отменило этот запуск, так что ракета Falcon 9 отправилась на орбиту без солнечного паруса на борту. Запуск Sunjammer пока что перенесен на 2018 год.

Текущие и будущие проекты

А теперь вернемся к Планетарному обществу. Именно оно инициировало запуск солнечного паруса LightSail-1, тестовое применение которого состоится 30 мая 2015 года. Правда, речь пока что идет лишь об отработке технологий, а не о полноценном проекте.

Парус LightSail-1 имеет площадь 32 квадратных метра. Он будет работать в паре с миниатюрным спутником CubeSat (так же, как и NanoSail-D2). Задача этого запуска заключается в тесте систем развертывания паруса, а также системы управления и связи. Аппарат проработает на орбите максимум десять дней. При этом его можно будет наблюдать с Земли в темное время суток.



Если же эти тестовые испытания дадут положительный результат, уже в 2016 году Планетарное общество запустит на орбиту полноценный солнечный парус LightSail-1. Он будет функционировать на высоте 800 километров, при этом время работы данного аппарата составит около четырех месяцев.

Создатели LightSail-1 надеются изучить за это время возможности маневрирования в Космосе с помощью солнечного паруса.



Интересно, что Планетарное общество решило обратиться за помощью в финансировании данного проекта ко всем жителям Земли. Организация запустила кампанию по сбору средств на сайте Kickstarter. Она стартовала всего несколько дней назад и уже собрала около 763 тысяч долларов при 200 тысячах изначально запрашиваемых. На данный момент, в ее фонд пожертвовало более 15 тысяч человек.

Можно сказать, что реальная история солнечных парусов начинается прямо на наших глазах. Красивая теория, которая дает нам перспективу межзвездных путешествий, пока что остается лишь теорией. Но в ближайшие десятилетия практика покажет, насколько верны предположения Максвелла, Цандера и Сагана.

Впрочем, солнечный парус – это лишь одна из многих технологий, которые в будущем откроют нам путь к звездам. Про остальные, не менее смелые и гениальные идеи, можно прочитать в .

Научно-исследовательская работа

На тему

«Солнечный парус»

Выполнил:

Швец Николай Игоревич

Ученик 10 класса

МБОУ «СОШ №25»

Г. Тулун

Научный руководитель:

учитель физики

Татарникова Надежда Михайловна

ОГЛАВЛЕНИЕ

Введение………………………………………………………………………….3

Солнечный парус………………………………………………………………………………3

Область применения солнечного паруса……………………………………………………………………………..4

Конструкция СП…………………………………………………………………………...…….6

Расчет времени разгона, необходимого

для выхода из сферы притяжения земли……………………………………………………………………...……….8

МОБ(межорбитальный буксир) использующий СП……………………………………………………………………………...…..9

Заключение………………………………………………………………………12

Список литературы…………………………………….…………………………………13

ВВЕДЕНИЕ

Актуальность данной работы в том, что широкой публике мало что известно о солнечном парусе, эта тема поднимается очень редко, и интересна сама ее нетривиальность, не говоря уже о конкретной информации.

Целью исследования является определение эффективности использования СП в областях науки и техники, а так же сравнение эффективности СП с эффективностью традиционных космических аппаратов, доказать что преимущество КА под солнечным парусом по сравнению с КА на ракетном двигателе заключается в более высоком КПД. Для достижения поставленной цели, были определены следующие задачи исследования:

1. Рассмотреть вопросы, связанные с использованием СП и современным состоянием работ в этой области.
2. Рассчитать время полета до Марса на КА с СП

3. Рассмотреть конструкцию СП на основе пневмокаркасов.
4. Ознакомиться с расчетами времени разгона КА под солнечным парусом с круговой орбиты до второй космической скорости.
5. Предложить схему разгона МОБ под солнечным парусом с использованием вспомогательных орбитальных КА.

СОЛНЕЧНЫЙ ПАРУС

Идея солнечного паруса (СП), использующего в качестве движущей силы давление солнечного света не нова. Она впервые возникла в 20-х годах и в течение десятков лет рассматривалась различными авиа и космическими организациями. Наш соотечественник Ф. А. Цандер, известный своими многочисленными трудами в области космонавтики, предложил выводить на орбиту космические зеркала (отражатели) передающие световую энергию Солнца на поверхность Земли для непосредственного использования. Дальнейшее освоение космического пространства, осуществление межпланетных перелетов, вынуждает конструкторов искать принципиально новые решения в построении космических кораблей. Одним из вариантов межпланетного космического корабля является солнечный парус. Плюс солнечного паруса по сравнению с лазерным парусом - солнечный парус не зависит от источника света, а минус - солнечный свет слабее, чем лазерный свет. СП не расходует топливо для разгона; в космосе паруса наполняет не ветер, а давление частиц солнечного света - фотонов. Оно заставляет

парусник непрерывно разгоняться (или тормозить). КА с солнечным парусом будет ускоряться очень не спеша, но со временем сможет достичь невиданных скоростей. Давление фотонов достаточно велико, чтобы КА мог путешествовать между планетами - от Меркурия до Юпитера; для преодоления еще больших расстояний на парус можно направить лазерный луч, запитываемый опять-таки солнечной энергией. Аспекты приложения технологии СП достаточно широки: от удержания спутников в точке стояния на геостационарной орбите до дальних шаттлов, несущих грузы между планетами, астероидами и кометами. Подлетая близко к Солнцу, парусники будущего смогут разгоняться до огромных скоростей, что позволит им сближаться с любым объектом Солнечной системы или, как уже говорилось выше, летать к звездам. Выгоды СП огромны: в сообщении студии «Космос» говорится, что парусник теоретически может летать в 10 раз быстрее, чем станции Уоуадег-1 и -2, которые достигли третьей космической скорости.

ОБЛАСТЬ ПРИМЕНЕНИЯ СОЛНЕЧНОГО ПАРУСА

Область применения солнечного паруса и солнечного парусного корабля огромна. Они могут использоваться для:
- обнаружения геомагнитных бурь,
- исследования нашей Солнечной системы,
- ретрансляции энергии, теле и радиосвязи,
- освещения отдельных районов Земли,
- очистки космоса от технологического «мусора»,
- межпланетных перелетов под солнечным парусом,
- создания крупных антенн в космосе для разведки полезных ископаемых и других полезных задач.

Солнечный парус и солнечный парусный корабль - прогрессивное направление Российской и мировой космонавтики. Его можно использовать в системах обнаружения плазменных штормов. Известно, что геомагнетические штормы могут быть причиной потери космических кораблей, сбоев в GPS (глобальная система позиционирования) сигналов, и даже сбоев наземных электрических сетей. Протоны с высокой энергией даже могут быть летальными для астронавтов, которые находятся в открытом космосе. Точное предсказание таких событий может быть сделано с помощью наблюдения за солнечным ветром. Такое наблюдение может быть осуществлено с помощью магнетометров и детекторов частиц на борту корабля, находящегося между Солнцем и Землей. Это можно сделать с помощью солнечного парусного корабля. Кроме того, СП можно использовать для межпланетных перелетов. Так, при полете к Марсу корабль выводится сначала ракетой - носителем на начальную низкую околоземную орбиту высотой около 200 км. Затем при помощи блока он переводится на стартовую орбиту высотой в несколько тысяч километров.

Продолжительность этих операций составит около 48 ч, после чего производится развертывание парусов, и под действием солнечного света корабль начинает разгон по спиральной траектории. Управляя ориентацией паруса, добиваются превращения орбиты в эллиптическую с постоянно возрастающим апогеем. Было рассчитано, что длительность разгона к Луне в этом случае составит около 120 суток. Время старта, а затем разгона выбирается так, чтобы парусник вышел в заданную область гравитационного поля Луны. Это позволит решить следующую задачу - перевести СПК на траекторию межпланетного полета к Марсу. Взаимное расположение Земли и Марса на этом этапе тоже подбирается так, чтобы вначале уменьшить период гелиоцентрической орбиты («торможение»), а затем афелий орбиты увеличить, чтобы достичь орбиты Марса («разгон»). Суммарное время, требуемое СПК для достижения Марса, составит около 1,9 года.

Обозначим давление света на орбите Земли Pо. Известно, что давление света меняется с расстоянием по закону: P ~ 1/R2. Найдем давление света посередине расстояния между Землей и Марсом: P 1/2 = Po (Rз/0.5(Rз+Rм)) 1/2 . Здесь Rз – радиус орбиты Земли = 1.5* 10 11 м, Rм – радиус орбиты Марса = 2.28 *10 11 м. Для простоты будем считать, что в течение времени движения космического аппарата от Земли до Марса Земля и Марс находятся на одной прямой, проведенной из центра Солнца. На самом деле это, конечно, не так. Будем считать, что на всем пути от Земли до Марса на парус действует постоянное давление света, равное P1/2 . Пусть площадь паруса равна S. Тогда сила, действующая на парус (т.е. на космический аппарат) F =P1/2 S. Из второго закона Ньютона найдем ускорение, с которым будет двигаться космический аппарат массы M: a = F/M = P1/2 S/M. Используя известное соотношение из курса физики (Механика) s = at2/2, где s – пройденный путь за время t (в нашем случае s= Rм – Rз) найдем время движения космического аппарата от Земли до Марса под действием давления солнечного света:

t = (2 (R м - R з)/ (P 1/2 S /M )) 1/2 = (2 (2,28*10 11 – 1,5*10 11)/0,0000045*10) 1/2 = 5887406с ~1,9 года

КОНСТРУКЦИЯ СП

Роторный солнечный парус состоит из восьми лопастей. Каждая в раскрытом виде представляет собой мембрану, натянутую на пневмокаркас трубчатого сечения диаметром 150 мм, изготовленный из полиэтишертерафталатной пленки толщиной 20 мкм и погонной массой 28 г/м2. Площадь натянутой на каркас мембраны 75 м2. Она изготовлена из металлизированной с одной стороны полиэтилтертерафталатной плёнки толщиной 5мкм и погонной массой 7 г/м2. Металлизированная поверхность мембраны обращена к Солнцу. Пневмокаркас служит для организации процесса развертывания лопасти СП, поддержания заданной формы и обеспечения жесткости при передаче сил и моментов от давления солнечного ветра на лопасть. Жесткость пневмокаркаса и его устойчивость обеспечивается остаточным давлением рабочего газа (азота) внутри пневмокаркаса, составляющим около 7000 Па. Лопасть развертывается из рулона и приобретает форму при срабатывании пирозамков.



Схема запуска солнечного паруса

на примере cosmos -1

Аппарат с СП, наряду с разгонной двигательной установкой (РДУ) и защитным кожухом, входит в состав головного блока (ГБ) ракеты-носителя. Конструктивная основа КАСП - приборная платформа, на которой крепятся РДУ с смонтированной на ней системой отделения, защитный кожух, блок парусов, приборное оборудование и служебные системы. Приборная платформа устанавливается на адаптер (раму) РН и соединяется с ним пирозамками. На ее герметичном днище размещаются узлы крепления РДУ, антенна 400 МГц, антенна GPS, антенны S-диапазона, солнечные датчики, две фотокамеры, газовые сопла системы ориентации и стабилизации, а также панели фотоэлектрических преобразователей. На оставшееся свободное пространство днища с наружной и внутренней стороны нанесены покрытия с оптическими свойствами, обеспечивающими требуемый тепловой режим. С внутренней стороны платформы размещаются радиокомплексы ДМ и S-диапазонов, приемник GPS, бортовой компьютер, датчик микроускорений, блок ДУСов, аккумуляторная батарея, два газовых баллона, ресивер и арматура СОиС. На верхнем фланце платформы установлен блок парусов - стойка, на которой размещены сборки парусов приводами, системой наполнения, механизмы фиксации и расчековки. До выведения на рабочую орбиту КАСП закрыт защитным радио-прозрачным кожухом. Масса КАСП перед включением апогейного двигателя составляет 130 кг, перед раскрытием солнечного паруса - 63.7 кг.


РАСЧЕТ ВРЕМЕНИ РАЗГОНА, НЕОБХОДИМОГО ДЛЯ ВЫХОДА ИЗ СФЕРЫ ПРИТЯЖЕНИЯ ЗЕМЛИ

В качестве примера рассмотрим разгон до параболической скорости КА, снабженного солнечным парусом при отлете с геостационарной орбиты. Пусть стартовая масса КА равна 2000 кг, площадь СП равна 10000 м2 , погонная масса материала СП = 7 г/м2 . Тогда имеем: mпар= S · СП = 10000 м2 · 7 г/м2= 70000 г = 70 кг

Полная сила, действующая на СП равна F= S · p = 10000 · 10 -5 = 0,1 H; Определим ускорение КА F = m · а;


Найдем характеристическую скорость, которую должен развить КА для выхода из сферы притяжения Земли


Вычислим время разгона


МОБ(межорбитальный буксир) ИСПОЛЬЗУЮЩИЙ СП

МОБ использующий солнечный парус - это космический аппарат нового типа с массой в несколько сотен килограммов и площадью парусов в несколько гектаров, движущихся под действием солнечного света, разгоняемый и управляемый автономно, без затрат рабочего тела двигателя. Его конструкция имеет два кольцевых бескаркасных, вращающихся в разные стороны пленочных паруса, поддерживающих свою форму под действием центробежных сил. Управляется и ориентируется корабль за счет использования гироскопических сил. Для этого корабля, осуществляющего полет в космосе, не требуется огромной энергии. Маленькие силы могут медленно и устойчиво разгонять транспортное средство до огромных скоростей. Поскольку энергия имеет массу, солнечный свет, попадающий на тонкую пленку - солнечный парус, обеспечивает такую силу. Притяжение Солнца обеспечивает другую силу. Давление света и гравитация могут носить космические корабли в любое место Солнечной системы. После ускорения в течение года солнечный парус может достичь скорости сто километров в секунду, оставляя сегодняшние ракеты далеко позади. В связи с тем, что такой корабль не может стартовать с Земли, солнечный парус необходимо строить в космосе. Хотя каркас и будет занимать огромную площадь, он (вместе с материалами) будет достаточно легок, чтобы вывести его на орбиту за 1-2 полета космического челнока. При движении по орбите вокруг Земли парус может разгонять КА только на одной половине оборота, на второй половине (встречное по отношению к Солнцу движение) оборота парус необходимо разворачивать вдоль направления солнечных лучей, чтобы избежать торможения. Данный недостаток МОБ на солнечном парусе можно избежать, если использовать дополнительные КА, которые будут собирать солнечный свет и направлять его с помощью передающей антенны на солнечный парус МОБ. Используя несколько таких вспомогательных, постоянно действующих КА с площадью приемных антенн существенно большей, чем у МОБ, можно обеспечить постоянный разгон МОБ. При одинаковом направлении исходных лучей света и сфокусированного луча передающей антенны суммарный импульс, действующий на вспомогательные КА будет равен нулю. Если же направления лучей не совпадают, то возникает необходимость использования на вспомогательных КА реактивных двигателей, например ЭРД, для компенсации неуравновешенного импульса.


Схема полета МОБ под солнечным парусом. 1- Вспомогательный КА. 2- Антенны приема солнечного излучения. 3- Передающая антенна. 4- Приемная антенна МОБ. 5- МОБ.

ЗАКЛЮЧЕНИЕ

Идея СП, за почти 100 лет своего существования претерпела определенные изменения. Перспектива в ближайшем будущем запустить высокотехнологичный межзвездный зонд на солнечном парусе со скоростью выше 0,01 с очень интригующая. Стоимость зонда на солнечных парусах на много порядков ниже чем стоимость зонда с ракетным двигателем. Теоретически, корабль с солнечным парусом способен достичь скорости в100000 км/с и даже выше. Если бы в 2010 году запустили в космос такой зонд, то (в идеальных условиях) в 2018 он догнал бы “Вояджер-1”, которому для этого путешествия потребовался бы 41 год. В настоящее время “Вояджер-1” (запущенный в 1977) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем. Это лишний раз доказывает, что космический аппарат с СП на порядок эффективнее традиционных КА.

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус – значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Возможно, самой волнующей миссией с использованием СП в ближайщее время сможет стать отправка космического аппарата, который раскроет парус вблизи орбиты Венеры или даже Меркурия, а затем отправится за пределы Солнечной системы и за несколько десятилетий достигнет гелиопаузы. Этот аппарат сможет на месте наблюдать взаимодействие солнца с галактикой. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.

Рождение Солнечного паруса

Когда родилась идея Звездного паруса, паруса Космических кораблей? Быть может когда был построен первый парусный корабль, или маленькая лодка под маленьким парусом?

Из истории науки достоверно изветсно, что cолнечный парус как таковой был изобретен другим русским ученым - Фридрихом Артуровичем Цандером (1887 - 1933). Он впервые рассмотрел несколько конструкций этого устройства, наиболее целесообразная из которых была подробно описана им в 1924 году в неопубликованном варианте статьи “Перелеты на другие планеты”.

Солнечный парус, по замыслу ученого, должен был иметь площадь в 1 квадратный километр при толщине экрана 0,01 миллиметра и массу 300 килограммов. Парус должен был иметь центральную ось и некоторый набор силовых элементов, поддерживающих его форму. Цандер отмечал, что толщина экрана может быть еще меньше, так как Эдисону удалось изготовить никелевые листы толщиной 0,001 миллиметра и размером 3200 квадратных метров.

Ученый также попытался разработать основы теории движения космических аппаратов под солнечным парусом. Он считал целесообразным направлять на солнечный парус космического аппарата поток света, собранный вторым парусом, расположенным на некоторой промежуточной межпланетной станции. Эта его идея перекликается с современными предложениями об использовании для разгона космического аппарата искусственного лучистого (лазерного) ветра, обеспечивающего существенно большее давление на поверхность, чем солнечные лучи.

Лазер может толкать солнечный парус на огромные расстояния.

Цандер также принимал участие в создании первой советской жидкотопливной ракеты (она была испытана в 1933 году вскоре после его смерти), создал чертежи крылатой ракеты и впервые предложил выращивать на борту космического аппарата растения, чтобы обеспечивать космонавтов кислородом и едой. Именем Цандера назван кратер на луне, а Латвийская Академия Наук учредила ежегодный приз (по физике и математике) имени этого выдающегося ученого.

Солнечный парус - путь к звездам

Солнечный парус-характеристики

Некоторые источники называют солнечный парус “световым” - чаще всего это происходит в тех случаях, когда в качестве источника света предлагается использовать не Солнце, а, например, лазер.

Принцип работы этого устройства прост до безобразия - космический корабль разворачивает большое полотно - парус, который либо отражает, либо поглощает (рассматриваются варианты и с черным парусом) фотоны света.
17 Kb

На орбите Земли (1 астрономическая единица расстояния от Солнца) парус массой 0,8 г/м2 испытывает примерно такое же по силе воздействие солнечного света. Давление обратно пропорционально квадрату расстояния от Солнца. Заметим, что парус может быть гораздо тяжелее - и все равно он останется более-менее функциональным, хотя и не сможет самостоятельно раскрываться под действием солнечного ветра (придется разворачивать его механическим путем).

Главным неудобством солнечного паруса является то, что он может двигать корабль лишь в сторону от Солнца, а не к нему. Иногда высказывается мнение, что полет в направлении Солнца возможен, если идти галсами (здесь очевидна аналогия с зигзагообразным движением морского парусника против ветра). Изменяя угол наклона солнечного паруса относительно падающего на него света, можно легко управлять космическим кораблем, сколь угодно часто меняя его траекторию (удовольствие, недоступное для ракетных двигателей).

Основное и самое главное достоинство “парусного” способа перемещения в космическом пространстве - полное отсутствие топливных затрат. Альтернатив современным химическим ракетам на околоземном пространстве пока нет - они сравнительно дешевы и способны вывести на орбиту грузы в сотни тонн.

Однако когда речь заходит о межпланетных путешествиях, преимущества химических ракет заканчиваются. Они попросту не способны обеспечить кораблю постоянное ускорение (а, следовательно, сообщить ему как можно более высокую скорость) - ведь, по сути, свыше 90% их массы составляет стремительно расходуемое горючее. По самым скромным расчетам, для путешествия на Марс понадобится 900 тонн топлива - и это при том, что масса полезной нагрузки будет примерно в 10 раз меньше. Про ракеты еще говорят - “топливо везет само себя”.

На первый взгляд, космический парус очень медлителен. Да, действительно, начальные этапы его разгона будут напоминать гонки черепах. Однако не следует забывать, что ускорение действует постоянно (для паруса массой 0,8 г/м2 начальное ускорение будет равно 1,2 мм/с2). В условиях безвоздушного пространства это позволит достичь огромных скоростей за весьма короткие сроки.

Теоретически, корабль с космическим парусом способен достичь скорости в100000 км/с и даже выше. Если в 2010 году запустить в космос такой зонд, то (в идеальных условиях) в 2018 он догонит “Вояджер-1”, которому для этого путешествия потребовался 41 год. В настоящее время “Вояджер-1” (запущенный в 1997) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем.

К сожалению, обсуждение перспектив использования солнечного паруса в космосе не касается одного очень важного вопроса - как будет осуществляться торможение корабля на таких гигантских скоростях? Для межзвездных экспедиций ответ есть - за счет использования солнечного паруса, развернутого в противоположную сторону (однако это существенно увеличит время полета). А как быть с путешествием, допустим, на Марс? Везти с собой ракетное топливо неэффективно, а использование новых типов двигателей (например, разрабатываемых в настоящее время ионных) пока находится под вопросом.

Теоретически, корабль с космическим парусом способен достичь скорости в100000 км/с и даже выше. Если в 2010 году запустить в космос такой зонд, то (в идеальных условиях) в 2018 он догонит “Вояджер-1”, которому для этого путешествия потребовался 41 год. В настоящее время “Вояджер-1” (запущенный в 1997) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем.

Материя и форма Солнечного паруса

Материал, из которого сделаны солнечные паруса, должен быть максимально легким и прочным. В настоящее время наиболее перспективными являются полимерные пленки - милар и каптон (толщиной 5 микрон), алюминизированные (тончайший слой металла в 100 нанометров) с одной стороны, что придает им отражающую способность до 90%.

Здесь есть свои сложности. Милар очень дешев и легкодоступен (чуть более толстые пленки имеются в открытой продаже), но непригоден для длительного применения в космосе, так как разрушается под воздействием ультрафиолетового излучения. Каптон более устойчив, однако минимальная толщина такой пленки - 8 микрон, и это уменьшает ходовые качества такого паруса.

Для межзвездных полетов космическому паруснику необходимо набрать невероятную скорость. Для этого ученые предлагают начинать путешествие не с земной орбиты, а с места поближе к Солнцу (например, с орбиты Меркурия). Это позволит значительно увеличить эффективность солнечного паруса, однако потребует для него более прочных, термостойких материалов. Согласно расчетам агентства NASA (США), при таком старте космический “парусник” достигнет Альфы Центавра за 32 года.

В настоящее время ученые надеются на развитие нанотехнологий - с их помощью можно будет создать легчайший и сверхэффективный солнечный парус из углеродных нанотрубок.

Форма (конструкция) парусов имеет едва ли не большее значение, чем материал, из которого они сделаны.

Самый простой и надежный (но более тяжелый, а, следовательно - не слишком быстрый) солнечный парус имеет каркасную конструкцию. Больше всего он напоминает воздушного змея - легкая крестообразная рама является несущей основой для четырех треугольных парусов, надежно закрепленных на ней. Форма каркаса может быть разной - даже круглой. Очевидное преимущество такой конструкции заключается в надежной фиксации парусов - они не смогут свернуться и ими легко управлять (поворачивать под разным углом к свету).

.

Каркасный солнечный парус.

Солнечный парус

Существуют проекты парусов, не имеющих каркаса - так называемая “вращающаяся конструкция”. Эти модели выполнены в виде лент, закрепленных на космическом аппарате. Как следует из названия, раскрытие парусов этого типа обеспечивается вращением корабля вокруг своей оси. Центробежные силы (на концах лент закреплен небольшой груз) вытягивают их в разные стороны, позволяя обойтись без тяжелого каркаса. Теоретически, такая конструкция обеспечивает более высокую скорость передвижения в космосе, чем каркасная, за счет своего малого веса.


Модель вращающегося солнечного паруса.

Таковы основные варианты строения солнечного паруса. Предлагаются также и другие модели, например - полотна, свободно парящие в космосе и прикрепленные к кораблю при помощи тросов. Это - своеобразный “гоночный” вариант парусов - при всех их скоростных преимуществах они ненадежны и сложны в управлении.


Свободно парящее полотно космического паруса (рисунок с сайта NASA).

Еще один вариант (хотя некоторые исследователи и склонны выводить его в отдельный класс транспортных средств будущего) - это так называемый “плазменный парус”.

Плазменные паруса будут представлять собой миниатюрную модель магнитного поля Земли. Точно так же, как наше магнитное поле прогибается под напором солнечного ветра, магнитное поле (диаметром 15-20 километров), окружающее космический корабль, будет отступать под давлением заряженных частиц.

Изобретения

9 августа прошлого года японский институт космонавтики (ISAS) произвел запуск и развертывание двух полноценных солнечных парусов на низких орбитах (122 и 169 км.).

Но страна восходящего солнца не стала первой в области испытаний солнечных парусов. Пальма первенства (с некоторыми оговорками) опять принадлежит России - 4 февраля 1993 года был проведен эксперимент “Знамя-2 ” с развертыванием 20-метровой тонкопленочной конструкции за счет использования центробежных сил на борту корабля “Прогресс М-15”, пристыкованного к орбитальной станции “Мир”.

Почему это первенство с оговорками? Дело в том, что основной задачей эксперимента было не испытание тяговых качеств этого полотна, а освещение участка земной поверхности отраженным светом - еще одна вполне реальная функция солнечных парусов.

На эту весну (предположительные сроки - нынешний месяц) был запланирован кластерный (на одной ракете класса “Днепр”) запуск спутников АКС-1 и АКС-2 компании “Космотранс”. Каждый из них весит около двух килограммов (контейнер 30х30х40 см.) и несет в себе солнечный парус размером с теннисный корт (толщина - 2 микрометра).

На поверхности пленки будут смонтированы позолоченные сенсоры, регистрирующие динамику распределения зарядов по площади паруса над сейсмоопасными районами Земли.

Помимо испытаний ходовых качеств космических парусников, предполагается провести ряд экспериментов по сверхчувствительному зондированию земной поверхности (предсказание землетрясений) и освещению ее пятном света диаметром в пять километров. Спутники будут выведены на 800-километровую орбиту и смогут находиться там на протяжении нескольких столетий.

Рисунок солнечного паруса, который в 1970-х годах предполагалось запустить на встречу с кометой Харли.

Солнечный парус модель

Миниатюрная (1 квадратный метр) модель солнечного паруса из милара.

НАСА выбрало три разработки, которые непременно окажутся в космосе

Национальное управление по аэронавтике и исследованию космического пространства определилось с так называемыми Technology Demonstration Missions, в число которых входят преобразование космической связи, навигация в глубоком космосе и двигатель для работы в космосе.

Отобраны следующие проекты: лазерная система космической связи, атомные часы и солнечный парус.

НАСА решило инвестировать именно в эти революционные технологии, поскольку они, как полагает ведомство, смогут стать основой космических программ будущего, а также, как ни странно, сократить расходы.

Наука и техника / Космос / Космонавтика и исследования космоса /

Атомные часы и спутник Iridium (иллюстрация НАСА).

«Демонстрация передачи данных с помощью лазера» (Laser Communications Relay Demonstration) - проект Дэвида Изрейла из Годдардовского центра космических полётов НАСА. Оптические технологии обещают «утолщение» канала связи с космическими аппаратами в 100 раз по сравнению с тем, что есть сегодня.

«Атомные часы глубокого космоса» (Deep Space Atomic Clock) - задумка Тодда Илая из Калифорнийского технологического института, аффилированного также с Лабораторией реактивного движения НАСА. В рамках этого проекта будут созданы и отправлены в космос на одном из спутников Iridium миниатюрные часы на ионах ртути, которые должны быть в 10 раз точнее нынешних систем.

«По ту сторону камеры Плам-Брук» (Beyond the Plum Brook Chamber) - так названа разработка и демонстрация солнечного паруса, которой занимается Натан Барнс из корпорации L"Garde. Плам-Брук - это полевая станция Исследовательского центра НАСА им. Джона Гленна, где расположена крупнейшая в мире вакуумная камера для имитации космических условий. Там, в частности, тестируют будущие космические корабли, комплектующие и материалы. Так вот, площадь нового солнечного паруса, как обещано, в семь раз превысит нынешние разработки. Как минимум, его можно будет использовать в качестве очень точного орбитального датчика солнечного ветра, а также сборщика космического мусора.

Два последних проекта будут готовы к полёту в течение трёх лет. Создатели лазерной связи попросили все четыре. Общий размер инвестиций составляет $175 млн. Дополнительные средства предоставят партнёры, заинтересованные в разработках.

***
Изобретен световой межпланетный корабль

Профессор Лос-Анджелесского университета изобрел модель сверхбыстрого корабля для межпланетных путешествий, который, как и солнечный парус, движется за счет света. В отличие от "паруса", новый корабль не отражает свет, а превращает его в электричество с помощью гигантской солнечной батареи, которая передает затем энергию ионным двигателям. Об этом сообщает EurekAlert.

Батарею предлагают сделать гибкой, чтобы ее можно было развернуть уже в космосе. "Электрическая мембрана" площадью в несколько тысяч квадратных метров позволит добраться до Плутона менее чем за год, разгоняясь при этом до скорости в сотни тысяч километров в час. Сотрудник NASA, прокомментировавший эту работу, заметил, что такое изобретение может пригодиться и для межзвездных экспедиций, когда источник света доступен только в самом начале пути. Пока нужных материалов для изготовления "мембраны" не придумано, но ученые надеются на быстрое развитие нанотехнологий.

(рисунок -выше)

Современные аппараты, которые отправляются на периферию Солнечной системы, используют ядерное горючее и движутся заметно медленнее. Так, зонд NASA New Horizons, запущенный в январе и снабженный плутониевым двигателем, достигнет окрестностей Плутона только через девять лет.
Солнечный парус компании L"Garde. Людей рядом с ним почти не видно... (Фото L’Garde Inc.)
Пока, однако, ни один запуск солнечного паруса (или родственных конструкций) не был успешным. В июне прошлого года российская ракета с частным "парусником" утонула, как и при первой попытке вывести аппарат на орбиту в 2001 году. С другой стороны, известно, что "паруса" безо всякого груза удавалось развернуть космонавтам вблизи станции "Мир" и шаттла.

Японский космический аппарат IKAROS
успешно расправил солнечный парус и
готовится к межпланетному полету


Согласно данным, полученным от представителей космического агентства Японии JAXA, успешно завершена операция по разворачиванию в космосе первого солнечного паруса космического аппарата IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). Но, тем не менее, развертывание паруса еще не является успехом всей миссии. Космический аппарат IKAROS должен начать двигаться под воздействием солнечного ветра, руководители миссии ожидают, что влияние солнечного ветра на движение аппарата можно будет зарегистрировать не ранее, чем несколько недель. Только после этого момента станет ясно, работает ли вообще солнечный парус.

Парус космического аппарата изготовлен из тончайшей, 0.00076 см, полимерной пленки покрытый тонким слоем солнечных батарей. Когда фотоны света ударяются в парус, они поглощаются или отражаются, сообщая ему дополнительный импульс силы, которая разгоняет космический аппарат. Фотоны являются очень маленькими частицами и их импульс весьма мал, но, учитывая их огромное количество, можно надеяться, что в течение долгого времени космический аппарат накопит достаточную для полета скорость.

Из-за того, что этот космический аппарат приводится в движение Солнцем, он не нуждается в двигателе и другом источнике энергии, что делает такие аппараты главными претендентами для полетов в межзвездном пространстве. Поскольку солнечный парус является и солнечной батареей, то дополнительная полученная электроэнергия может накапливаться и использоваться для движения в те моменты, когда солнечный ветер попросту отсутствует.

Конечно, ничего из всего вышесказанного не будет действовать, если солнечный парус не развернется должным образом. Специалисты JAXA смогли обеспечить правильное разворачивание паруса, раскрутив достаточно быстро космический аппарат вокруг оси, после чего парус развернулся под воздействием центробежных сил.

К звездам на острие луча

Д октор Роберт Л. Форвард Симпозиум по межзвездным сообщениям и путешествиям.
Филадельфия, Пенсильвания.

Хотя и существует возможность использовать термоядерный синтез и антиматерию для медленного пут ешествия к самым близким звездам, вполне может быть, что ракета - не лучшее транспортное средство для межзвездного полета. Все ракеты состоят из полезной нагрузки, запаса реактивной массы, источник энергии, двигателя, движителя и конструкции все это соединяющей. Но имеется целый класс космических аппаратов, которые не должны нести никаких источников энергии, реактивной массы и даже двигателя на борту и состоят только из полезной нагрузки и движителя. Эти космические аппараты разгоняются энергией излучения внешнего источника. Опубликовано много работ, предлагающих разные идеи, реализующие такой привод. Три из них я хочу здесь обсудить. Первый - зонд, приводимый в движение выстреливаемыми шариками или пылинками материи. Маленькие пылинки вещества разгоняются в Солнечной системе и направляются на межзвездный зонд, где они перехватываются и отдают свой импульс кораблю. Так же мы рассмотрим идею использовать мазер для разгона зонда, который является, по сути, большой сеткой. Это зонд-парус из проволочной сетки с микросхемами в ее узлах. Парус-сетка помещается в поток микроволнового излучения и быстро разгоняется им. Высокое ускорение позволяет такому парусу достигнуть скорости сравнимой со скоростью света до того как линза уже не сможет фокусировать на нем энергию излучения. По прибытию такого корабля в чужую звездную систему передатчик у Земли опять направляет в сторону зонда микроволновую энергию. Используя провода сетки как антенны, микросхемы собирают эту энергию для питания оптических датчиков и своих логических схем, чтобы накопить научную информацию и получить изображение далекой планетной системы. Полученная картинка отправляется назад, на Землю. Третья схема привода - это разгоняемый лазером световой парус . Здесь большой парус из светоотражающего материала разгоняется к звездам давлением света, который генерирует большая батареей лазеров расположенных на орбите возле Солнца. Такой световой парус достиг бы релятивистских скоростей за несколько лет. По прибытию к цели, часть паруса в центре, отделяется от основного и ориентируется так, чтобы находиться перед большим кольцевым парусом который продолжает лететь вперед. Лазерный луч, посланный из Солнечной системы, отражается от большого кольцевого паруса, который теперь выполняет роль отражающего зеркала, и попадает на обратную сторону малого паруса. Отраженный таким образом луч из Солнечной системы тормозит малый парус и обеспечивает выход на орбиту звезды назначения. После того как команда исследует эту звездную систему в течении нескольких лет, еще один кольцевой парус, возвращает экспедицию назад, отделяется от паруса торможения. Лазерный луч из солнечной системы в этот раз опять переотражается от этого кольцевого паруса, разгоняя возвращаемый, еще меньший парус в направлении дома. Поскольку на этот раз парус летит в сторону Солнечной системы, луч, направленный на него при подлете, затормозит возвращающуюся экспедицию.

Оценка ракетной технологии

Нет никакой необходимости использовать именно ракетный принцип, чтобы построить межзвездный корабль. Если мы используем концепцию классической ракеты, мы обнаруживаем, что любое подобное устройство состоит из полезной нагрузки, топлива (реактивной массы), источника энергии, двигателя, который сообщает энергию топливу (реактивной массе), движителя, то есть устройства, превращающее импульс реактивной массы в импульс корабля, и конструкции все это соединяющей. Классическая химическая ракета совмещает реактивную массу и источник энергии в химическом топливе. Но так как любая ракета должна нести отбрасываемую реактивную массу наряду со всем остальным, возможности разгона такого корабля существенно ограничены. Для миссий, у которых конечная скорость v больше чем скорость истечения u , необходимый запас топлива (отбрасываемой массы) возрастает как экспонента отношения v/u .
Можно придумать другой тип транспортного средства, которое не использует ракетный принцип (то есть не несет всю реактивную массу на борту) и таким образом избегает экспоненциального роста массы топлива, неизбежного в случае классической ракеты. Некоторые из таких идей превосходные кандидат на роль идеального межзвездного корабля. Например, прямоточная система Бассарда (Bussard interstellar ramjet ). Межзвездная прямоточная система не несет на себе никакого запаса реактивной массы и даже энергии, потому что она использует специальный коллектор чтобы собирать атомы водорода, которые имеются в "пустоте" космоса. Собранные атомы водорода используются как термоядерное топливо в двигателе, где энергия синтеза применяется для разгона продуктов реакции (обычно атомов гелия) которые и обеспечивают тягу для путешествия. К сожалению никто пока не знает как построить реактор на синтезе голых протонов и как создать коллектор для сбора водорода (который должен быть очень большой в диаметре и очень легкий по массе).

Тяга на энергии излучения

И меется целый класс других космических кораблей, которые не должны нести с собой никаких источников энергии, запаса реактивной массы и даже никаких двигателей. Они состоят только из полезной нагрузки, движителя и, разумеется, конструкции все это соединяющей. Это корабли, приводимые в движение энергией излучения из внешнего источника. В такой схеме все тяжелые части (запас реактивной массы, источник энергии и двигатель) остаются дома, в Солнечной системе. Здесь, вокруг Солнца всегда имеется неограниченный запас всегда доступного топлива и мощный источник энергии (избыток обычного солнечного света). Оставленный дома двигатель может обслуживаться, ремонтироваться и даже модернизироваться по ходу миссии. Немало идей таких приводов на излучении были опубликованы в литературе. Три будут здесь рассмотрены. Все эти версии привода могут быть построены при разумной экстраполяции уже существующей на сегодняшний день технологии. Первый - это привод на луче материи (выстреливаемых частичках вещества), второй - микроволновый парус-сетка, третий - лазерный парус.

Зонд, разгоняемый лучом материи

Концепция "разгоняемого лучом материи зонда" состоит в том, что маленькие частички вещества (шарики или пылинки) разгоняются ускорителем в солнечной системе и аккуратно направляются на межзвездный зонд, где те захватываются и передают свой импульс космическому кораблю. При использовании маленьких порций вещества фундаментальные ограничения электромагнитных волн при увеличении расстояния до цели могут быть легко преодолены. Поэтому, кажется куда разумней использовать луч частичек, чем луч фотонов для передачи импульса на большие расстояния. Шарики-частички могут быть запущены очень длиным и мощным линейным ускорителем. Он должен быть установлен в Солнечной системе, и использовать для разгона частичек либо энергию Солнца, либо ядерную энергию.
Поток частичек должен быть очень аккуратно нацелен сразу же после запуска и, возможно, нужна будет повторная переколлимация (поднастройка) еще несколько раз в процесс полета. Луч вещества, в конце концов, должны быть перехвачены и отражены назад межзвездным зондом, который примет от них разгонный импульс.
Кажущаяся важной, на первый взгляд, абсолютная точность прицеливания пусковой установки, не является на самом деле серьезной проблемой. Зонд может детектировать положение летящего на него потока частиц и сам корректировать свое положение, всегда оставаться в его центре. Ряд корректирующих форму и направление луча станций могли бы находиться далеко от ускорителя по направлению движения потока частичек. Например, каждая очередная такая станция могла бы находится в три раза дальше, чем предыдущая и производить одну треть настройки (коллимации) скорости и формы потока.
Грубая настройка луча могла бы быть выполнена электромагнитным или статическим полем, а тонкая коррекция может выполняться световым давлением лазера, потоком плазмы или потоком нейтральных частиц.
Один из методов захвата высокоскоростных частиц на борту разгоняемого корабля состоит в том, чтобы испарять подлетающие твердые нейтральные шарики импульсом фотонов или частиц, превращая те в плазму. После этого заряженную плазму можно отражать магнитным полем наподобие того, что отражает плазму в "магнитном сопле" ("магнитной пробке" или зеркале) на пульсирующих термоядерных ракетных двигателях . Габариты магнитного зеркала должны быть приняты из расчета того, что по крайней мере радиус витка подлетающего иона протона, будет 3 метра при скорости подлетающих частичек 0.1 С и магнитном поле напряженностью 10 Тесла.
Развивая дальше эту концепцию, можно предположить такое изменение состава и скорости шариков-частичек, чтобы они представляли из себя термоядерное топливо, подлетающее к зонду с относительно низкой скоростью, поэтому они не отражаются, а улавливаются и используются в термоядерном двигателе для разгона и торможения.
Торможение у цели так же может быть реализовано с применением данной схеме привода. От основного корабля отделяется беспилотный щит, от которого частицы луча материи рикошетят и подлетают к основному кораблю со стороны цели, обеспечивая ему тормозное ускорение.
Возможно, однажды где-нибудь войдет в строй "межзвездный хайвей"? Тогда поток частиц будет запускаться с двух сторон, что обеспечит относительно простое и удобное двусторонне движение по нему.

Starwisp ("Звездная дымка") - разгоняемый мазером зонд-сетка

Starwisp ("Звездная дымка") - это сверхлегкий, высокоскоростной межзвездный флай-бай зонд (зонд-робот исследующий цель без торможения, пролетая мимо нее) разгоняемый потоком микроволнового излучения . Основа конструкции: парус в виде тонкой проволочной сетки, в узлах которой расположены микросхемы. Парус-сетка разгоняется с большим ускорением мощным микроволновым лучом, который фокусируется на его поверхность большой сегментной плоской линзой, состоящей из концентрических колец, в которых чередуется кольца, заполненные металлической сеткой с кольцами пустого пространства (см. рис 1). Такая конфигурация колец будет работать как простая, но эффективная линза для микроволнового луча.
Длина микроволн намного больше, чем ячейки в сетке "Starwisp", поэтому ажурный парус для микроволнового излучения столь же непроницаема как толстый лист металла. Когда микроволны налетают на проволочную сетку, они отражаются от нее в обратном направлении. В результате импульс отраженных микроволн передается сетке-парусу. Величина импульса невелика, но если парус легкий, а мощность микроволнового луча достаточна, итоговое ускорение корабля может быть во много раз больше ускорения свободного падения на Земле (g). Большое ускорение зонда в микроволновом луче позволяет "Звездной дымке" достичь околосветовой скорости, все еще находясь недалеко от фокусирующей линзы - в пределах Солнечной системы.
Перед прибытием зонда к цели, передатчик микроволн у Земли снова включается и буквально затапливает звездную систему-цель потоком микроволновой энергии. Используя проволочные ячейки сетки как антенны, микросхемы "Starwisp" собирают достаточное количество энергии для их оптических датчиков и логических схем, чтобы увидеть и сформировать образ планет, находящихся в системе. Направление, с которого поступают микроволны воспринимается буквально в каждой ячейке сетки и эта информация о направлении используется микросхемами корабля для того чтобы использовать ячейки на этот раз как микроволновые антенны, излучающие сигнал обратно к Земле, содержащий данные о открывшейся зонду картине.

подробнее http://go2starss.narod.ru/pub/E001_FBPPS.html

Лазерный световой парус

Один из лучших методов путешествия к звездам, был бы метод, использующий большой парус из светоотражающего материала разгоняемый давлением луча сгенерированного большой батареей лазеров, расположенных на низкой орбите возле Солнца. . С такой технологией мы могли бы строить космические корабли, которые могут не только нести большую команду людей с приличной скоростью к ближайшим звездам, но и смогли бы затормозить экспедицию у цели исследования, а потом и вернуть команду назад на Землю. Мы могли бы совершить такой полет в пределах одной человеческой жизни.
В системе с лазерным световым парусом свет от мощного лазера отражается от большого зеркального паруса окружающего полезную нагрузку. Световой парус изготавливается из тончайшей алюминиевой пленки прошитой тонкой и прочной структурой силовых швов (такелажем), на которую в свою очередь подвешена полезная нагрузка. Световое давление лазерного света толкает парус и полезную нагрузку создавая необходимую тягу.
Звездолет на лазерном световом парусе настолько далек от концепции ракеты, насколько это возможно. Такой звездолет состоит только из полезной нагрузи и паруса, который является и движителем и несущей структурой корабля. Двигатель нашего звездолета - лазер (их батарея), источник энергии - Солнце, и топливом (реактивной массой) является лазерный свет сам по себе.
Парус, который будет использовать световой корабль, является развитием версии солнечного паруса, который был спроектирован Лабораторией Реактивного Движения NASA (Jet Propulsion Laboratory) для встречи с кометой Галлея и быстрого полета в пояс астероидов. Необходимые для разгона лазеры были бы более мощной версией высоко-мощных лазерных батарей лихорадочно исследуемых сейчас по программе Стратегической Оборонной Инициативе Департаментом Вооружений (в СССР называемой СОИ, а в США - SDI Space Defense Initiative. прим. пер. ). Очень важно понимать, что мы не нуждаемся ни в каких крупных научных открытиях, чтобы построит такой звездолет. Основные физические принципы лазеров, фокусирующая линза, и парус - все это нам уже известно. Все что требуется, дабы построить лазерный парусный звездолет реально и в металле - много конструкторского труда (и много денег).

» (поток фотонов , именно он используется солнечным парусом) и «солнечный ветер » (поток элементарных частиц и ионов, который предполагается использовать для полётов на электрическом парусе - другой разновидности космического паруса).

Давление солнечного света чрезвычайно мало (на Земной орбите - около 5·10 −6 Н/м 2 ) и уменьшается пропорционально квадрату расстояния от Солнца . Однако солнечный парус совсем не требует ракетного топлива , и может действовать в течение почти неограниченного периода времени, поэтому в некоторых случаях его использование может быть привлекательно. Эффект солнечного паруса использовался несколько раз для проведения малых коррекций орбиты космических аппаратов, в роли паруса использовались солнечные батареи или радиаторы системы терморегуляции. Однако на сегодня ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя .

Солнечный парус в проектах звездолётов

Солнечный парус - самый перспективный и реалистичный на сегодня вариант звездолёта .

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволит увеличить полезную нагрузку по сравнению с космическим кораблем на реактивном движении.

Недостатком солнечного парусника является тот факт, что за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида. Данный проект ставит проблему точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Уже сейчас можно построить межзвёздный зонд, использующий давление солнечного ветра.

Существует 2 варианта солнечных парусников: на давлении электромагнитных волн и на потоке частиц.

Космическая регата

Солнечный парус диаметром 20 метров, разработанный в НАСА

Толщина солнечного паруса

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс. Его идея заключалась в выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к Марсу. Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако, солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА , и получил первую премию конкурса .

Космические аппараты, использующие солнечный парус

Схема стабилизации космического аппарата

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса .

Первое развёртывание солнечного паруса

Первое развёртывание солнечного паруса в космосе было произведено на российском корабле «Прогресс» 4 февраля 1993 года в рамках проекта «Знамя» .

См. также

  • Космический парус
    • Магнитный парус

Примечания

Ссылки

  • Консорциум «Космическая регата» - Проекты - Солнечные паруса и рефлекторы

Литература

  • Эльясберг П. Е. Введение в теорию полёта искусственных спутников Земли. - М., 1965.

Wikimedia Foundation . 2010 .

Смотреть что такое "Солнечный парус" в других словарях:

    Устройство (напр., в виде металлизированной пленки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Большой Энциклопедический словарь

    Устройство (например, в виде металлизированной плёнки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Энциклопедический словарь

    Солнечный парус - (тент) использовался летом в амфитеатрах для защиты от солнца во время многочасовых представлений. Надписи на стенах в Помпее, возвещающие о таких представлениях, снабжались особой пометкой: vela erunt имеется С. п. Археологами обнаружены … Словарь античности

    солнечный парус - Light Sailor Световой (солнечный) парус Система приведения в движение космического корабля, которая получает толчок от давления света, падающего на тонкую металлическую плёнку … Толковый англо-русский словарь по нанотехнологии. - М.

    Один из возможных движителей космического летательного аппарата (КЛА); представляет собой устанавливаемую на КЛА и развёртываемую в полёте непрозрачную плёнку (например, металлизированная полимерная) большой площади, способную сообщить… … Большая советская энциклопедия

    Солнечный парус - тент, использов. летом в амфитеатрах для защиты от солнца во время многочас. представл. Надписи на стенах в Помпее, возвещ. о таких представл., снабжались особой пометкой: имеется С. п. Археологами обнаруж. спец. конструкции для натягив … Древний мир. Энциклопедический словарь

    солнечный парус - Устройство в виде, например, металлизированной плёнки большой площади, служащее для перемещения в космосе объекта (тела) под действием светового давления солнечных лучей. В современной космонавтике это пока единственный нереактивный двигатель. E … Толковый уфологический словарь с эквивалентами на английском и немецком языках

    Космос 1 Cosmos 1 Космос 1 (компьютерная модель) Производитель … Википедия

    У этого термина существуют и другие значения, см. Парус (значения). Парусное судно Парус ткань или пластина, прикрепляемая к средству передвижения и преобразующая энергию ветра в энергию поступательного движения … Википедия

    Форма двигателя для космического аппарата, использующая в качестве источника тяги импульс ионов солнечного ветра. Придуман в 2006 году доктором финского метеорологического института Пекка Янхуненым Власти Евросоюза проявляют повышеный интерес … Википедия

Книги

  • Солнечный парус. Фантастика или реальность космоплавания? С дополнениями. Solar Sail Motion in Near-Sun Regions. Русско-английский путеводитель по современной терминологии , Е. Н. Поляхова, В. В. Коблик. В настоящей книге отражены основные динамические принципы современной теории космоплавания, т. е. полета в космосе под солнечным парусом, движущимся под действием светового давления солнечных…

Солнечный парус шириной 20 метров, разработанный в НАСА

Солнечный парус (также называемый световым парусом или фотонным парусом ) - приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение .

Следует различать понятия «солнечный свет» (поток фотонов, именно он используется солнечным парусом) и (поток элементарных частиц и ионов, который используется для полётов на электрическом парусе - другой разновидности космического паруса).

Идея полетов в космосе с использованием солнечного паруса возникла в 1920-е годы в России и принадлежит одному из пионеров ракетостроения Фридриху Цандеру, исходившему из того, что частицы солнечного света - фотоны - имеют импульс и передают его любой освещаемой поверхности, создавая давление. Величину давления солнечного света впервые измерил русский физик Пётр Лебедев в 1900 году.

Давление солнечного света чрезвычайно мало (на Земной орбите - около 9·10 −6 Н/м 2) и уменьшается пропорционально квадрату расстояния от . Однако солнечный парус может действовать в течение почти неограниченного периода времени, и совсем не требует топлива, и поэтому в некоторых случаях его использование может быть привлекательно. Однако на сегодня ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя.

Солнечный парус в проектах звездолётов

«Гелиопаузная электростатическая быстрая транзитная система» HERTS E-Sail НАСА

Солнечный парус - самый перспективный и реалистичный на сегодняшний день вариант звездолёта.

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволяет увеличить полезную нагрузку по сравнению с космическим кораблём на реактивном движении. Однако концепция солнечного паруса требует легкого по массе и одновременно большого по площади паруса.

Недостатком солнечного парусника является зависимость ускорения от расстояния до Солнца: чем дальше от Солнца, тем меньше давление солнечного света и тем самым меньше ускорение паруса, а за пределами давление солнечного света и соответственно эффективность солнечного паруса приблизится к нулю. Световое давление от Солнца довольно мало, поэтому для увеличения ускорения существуют проекты разгона солнечного парусника лазерными установками с генерирующих станций вне . Однако данные проекты сталкиваются с проблемой точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Джеффри Ландис предложил использовать для передачи энергии через лазер от базовой станции на межзвёздный зонд с ионным двигателем, что дает некоторое преимущество по сравнению с чисто космическим парусом (в настоящее время данный проект неосуществим из-за технических ограничений).

Космическая регата

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс. Его идея заключалась в выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к . Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако, солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА, и получил первую премию конкурса.

Космические аппараты, использующие солнечный парус

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса.

Первое развёртывание солнечного паруса в космосе было произведено на российском 24 февраля 1993 года в рамках проекта «Знамя-2».

21 мая 2010 года Японское космическое агентство (JAXA) запустило , на борту которой находились космический аппарат “IKAROS” с солнечным парусом и метеорологический аппарат для изучения . “IKAROS” оснащён тончайшей мембраной размером 14 на 14 метров. С его помощью предполагается исследовать особенности движения аппаратов при помощи солнечного света. На создание аппарата было потрачено 16 миллионов долларов, отмечает агентство. Раскрытие солнечного паруса началось 3 июня 2010 года, а 10 июня успешно завершилось. По кадрам, переданным с борта “IKAROS”, можно сделать вывод, что все 200 квадратных метров ультратонкого полотна расправились успешно, а тонкоплёночные солнечные батареи начали вырабатывать энергию.