Difference of cosines formula. Universal trigonometric substitution, derivation of formulas, examples

The concepts of sine, cosine, tangent and cotangent are the main categories of trigonometry, a branch of mathematics, and are inextricably linked with the definition of angle. Mastery of this mathematical science requires memorization and understanding of formulas and theorems, as well as developed spatial thinking. This is why trigonometric calculations often cause difficulties for schoolchildren and students. To overcome them, you should become more familiar with trigonometric functions and formulas.

Concepts in trigonometry

To understand the basic concepts of trigonometry, you must first understand what a right triangle and an angle in a circle are, and why all basic trigonometric calculations are associated with them. A triangle in which one of the angles measures 90 degrees is rectangular. Historically, this figure was often used by people in architecture, navigation, art, and astronomy. Accordingly, by studying and analyzing the properties of this figure, people came to calculate the corresponding ratios of its parameters.

The main categories associated with right triangles are the hypotenuse and the legs. Hypotenuse - the side of a triangle opposite right angle. The legs, respectively, are the other two sides. The sum of the angles of any triangles is always 180 degrees.

Spherical trigonometry is a section of trigonometry that is not studied in school, but in applied sciences such as astronomy and geodesy, scientists use it. The peculiarity of a triangle in spherical trigonometry is that it always has a sum of angles greater than 180 degrees.

Angles of a triangle

In a right triangle, the sine of an angle is the ratio of the leg opposite the desired angle to the hypotenuse of the triangle. Accordingly, cosine is the ratio of the adjacent leg and the hypotenuse. Both of these values ​​always have a magnitude less than one, since the hypotenuse is always longer than the leg.

The tangent of an angle is a value equal to the ratio of the opposite side to the adjacent side of the desired angle, or sine to cosine. Cotangent, in turn, is the ratio of the adjacent side of the desired angle to the opposite side. The cotangent of an angle can also be obtained by dividing one by the tangent value.

Unit circle

A unit circle in geometry is a circle whose radius is equal to one. Such a circle is constructed in Cartesian system coordinates, while the center of the circle coincides with the origin point, and the initial position of the radius vector is determined along the positive direction of the X axis (abscissa axis). Each point on the circle has two coordinates: XX and YY, that is, the coordinates of the abscissa and ordinate. By selecting any point on the circle in the XX plane and dropping a perpendicular from it to the abscissa axis, we obtain a right triangle formed by the radius to the selected point (denoted by the letter C), the perpendicular drawn to the X axis (the intersection point is denoted by the letter G), and the segment the abscissa axis is between the origin of coordinates (the point is designated by the letter A) and the intersection point G. The resulting triangle ACG is a right triangle inscribed in a circle, where AG is the hypotenuse, and AC and GC are the legs. The angle between the radius of the circle AC and the segment of the abscissa axis with the designation AG is defined as α (alpha). So, cos α = AG/AC. Considering that AC is the radius of the unit circle, and it is equal to one, it turns out that cos α=AG. Likewise, sin α=CG.

In addition, knowing this data, you can determine the coordinate of point C on the circle, since cos α=AG, and sin α=CG, which means point C has the given coordinates (cos α;sin α). Knowing that the tangent is equal to the ratio of sine to cosine, we can determine that tan α = y/x, and cot α = x/y. By considering angles in a negative coordinate system, you can calculate that the sine and cosine values ​​of some angles can be negative.

Calculations and basic formulas


Trigonometric function values

Having considered the essence of trigonometric functions through the unit circle, we can derive the values ​​of these functions for some angles. The values ​​are listed in the table below.

The simplest trigonometric identities

Equations in which there is an unknown value under the sign of the trigonometric function are called trigonometric. Identities with the value sin x = α, k - any integer:

  1. sin x = 0, x = πk.
  2. 2. sin x = 1, x = π/2 + 2πk.
  3. sin x = -1, x = -π/2 + 2πk.
  4. sin x = a, |a| > 1, no solutions.
  5. sin x = a, |a| ≦ 1, x = (-1)^k * arcsin α + πk.

Identities with the value cos x = a, where k is any integer:

  1. cos x = 0, x = π/2 + πk.
  2. cos x = 1, x = 2πk.
  3. cos x = -1, x = π + 2πk.
  4. cos x = a, |a| > 1, no solutions.
  5. cos x = a, |a| ≦ 1, x = ±arccos α + 2πk.

Identities with the value tg x = a, where k is any integer:

  1. tan x = 0, x = π/2 + πk.
  2. tan x = a, x = arctan α + πk.

Identities with the value ctg x = a, where k is any integer:

  1. cot x = 0, x = π/2 + πk.
  2. ctg x = a, x = arcctg α + πk.

Reduction formulas

This category of constant formulas denotes methods with which you can move from trigonometric functions of the form to functions of argument, that is, reduce the sine, cosine, tangent and cotangent of an angle of any value to the corresponding indicators of the angle of the interval from 0 to 90 degrees for greater ease of calculation.

Formulas for reducing functions for the sine of an angle look like this:

  • sin(900 - α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 - α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 - α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 - α) = -sin α;
  • sin(3600 + α) = sin α.

For cosine of angle:

  • cos(900 - α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 - α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 - α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 - α) = cos α;
  • cos(3600 + α) = cos α.

The use of the above formulas is possible subject to two rules. First, if the angle can be represented as a value (π/2 ± a) or (3π/2 ± a), the value of the function changes:

  • from sin to cos;
  • from cos to sin;
  • from tg to ctg;
  • from ctg to tg.

The value of the function remains unchanged if the angle can be represented as (π ± a) or (2π ± a).

Secondly, the sign of the reduced function does not change: if it was initially positive, it remains so. Same with negative functions.

Addition formulas

These formulas express the values ​​of sine, cosine, tangent and cotangent of the sum and difference of two angles of rotation through their trigonometric functions. Typically the angles are denoted as α and β.

The formulas look like this:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tan(α ± β) = (tg α ± tan β) / (1 ∓ tan α * tan β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

These formulas are valid for any angles α and β.

Double and triple angle formulas

The double and triple angle trigonometric formulas are formulas that relate the functions of the angles 2α and 3α, respectively, to the trigonometric functions of the angle α. Derived from addition formulas:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 - 2sin^2 α.
  3. tan2α = 2tgα / (1 - tan^2 α).
  4. sin3α = 3sinα - 4sin^3 α.
  5. cos3α = 4cos^3 α - 3cosα.
  6. tg3α = (3tgα - tg^3 α) / (1-tg^2 α).

Transition from sum to product

Considering that 2sinx*cosy = sin(x+y) + sin(x-y), simplifying this formula, we obtain the identity sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Similarly sinα - sinβ = 2sin(α - β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tanα + tanβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Transition from product to sum

These formulas follow from the identities of the transition of a sum to a product:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Degree reduction formulas

In these identities, the square and cubic powers of sine and cosine can be expressed in terms of the sine and cosine of the first power of a multiple angle:

  • sin^2 α = (1 - cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα - sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 - 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Universal substitution

Formulas for universal trigonometric substitution express trigonometric functions in terms of the tangent of a half angle.

  • sin x = (2tgx/2) * (1 + tan^2 x/2), with x = π + 2πn;
  • cos x = (1 - tan^2 x/2) / (1 + tan^2 x/2), where x = π + 2πn;
  • tg x = (2tgx/2) / (1 - tg^2 x/2), where x = π + 2πn;
  • cot x = (1 - tg^2 x/2) / (2tgx/2), with x = π + 2πn.

Special cases

Special cases of protozoa trigonometric equations are given below (k is any integer).

Quotients for sine:

Sin x value x value
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk or 5π/6 + 2πk
-1/2 -π/6 + 2πk or -5π/6 + 2πk
√2/2 π/4 + 2πk or 3π/4 + 2πk
-√2/2 -π/4 + 2πk or -3π/4 + 2πk
√3/2 π/3 + 2πk or 2π/3 + 2πk
-√3/2 -π/3 + 2πk or -2π/3 + 2πk

Quotients for cosine:

cos x value x value
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Quotients for tangent:

tg x value x value
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Quotients for cotangent:

ctg x value x value
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Theorems

Theorem of sines

There are two versions of the theorem - simple and extended. Simple theorem sines: a/sin α = b/sin β = c/sin γ. In this case, a, b, c are the sides of the triangle, and α, β, γ are the opposite angles, respectively.

Extended sine theorem for an arbitrary triangle: a/sin α = b/sin β = c/sin γ = 2R. In this identity, R denotes the radius of the circle in which the given triangle is inscribed.

Cosine theorem

The identity is displayed as follows: a^2 = b^2 + c^2 - 2*b*c*cos α. In the formula, a, b, c are the sides of the triangle, and α is the angle opposite to side a.

Tangent theorem

The formula expresses the relationship between the tangents of two angles and the length of the sides opposite them. The sides are labeled a, b, c, and the corresponding opposite angles are α, β, γ. Formula of the tangent theorem: (a - b) / (a+b) = tan((α - β)/2) / tan((α + β)/2).

Cotangent theorem

Connects the radius of a circle inscribed in a triangle with the length of its sides. If a, b, c are the sides of the triangle, and A, B, C, respectively, are the angles opposite them, r is the radius of the inscribed circle, and p is the semi-perimeter of the triangle, the following identities are valid:

  • cot A/2 = (p-a)/r;
  • cot B/2 = (p-b)/r;
  • cot C/2 = (p-c)/r.

Application

Trigonometry is not only a theoretical science associated with mathematical formulas. Its properties, theorems and rules are used in practice by various industries. human activity— astronomy, air and sea navigation, music theory, geodesy, chemistry, acoustics, optics, electronics, architecture, economics, mechanical engineering, measuring work, computer graphics, cartography, oceanography, and many others.

Sine, cosine, tangent and cotangent are the basic concepts of trigonometry, with the help of which one can mathematically express the relationships between the angles and lengths of the sides in a triangle, and find the required quantities through identities, theorems and rules.

One of the areas of mathematics that students struggle with the most is trigonometry. It is not surprising: in order to freely master this area of ​​​​knowledge, you need spatial thinking, the ability to find sines, cosines, tangents, cotangents using formulas, simplify expressions, and be able to use the number pi in calculations. In addition, you need to be able to use trigonometry when proving theorems, and this requires either a developed mathematical memory or the ability to derive complex logical chains.

Origins of trigonometry

Getting acquainted with this science should begin with the definition of sine, cosine and tangent of an angle, but first you need to understand what trigonometry does in general.

Historically, the main object of study in this branch of mathematical science was right triangles. The presence of an angle of 90 degrees makes it possible to carry out various operations, allowing you to determine the values ​​of all parameters of the figure in question using two sides and one angle or two angles and one side. In the past, people noticed this pattern and began to actively use it in the construction of buildings, navigation, astronomy and even in art.

Initial stage

Initially, people talked about the relationship between angles and sides solely using the example of right triangles. Then special formulas were discovered that made it possible to expand the boundaries of use in everyday life this branch of mathematics.

The study of trigonometry in school today begins with right triangles, after which students use the acquired knowledge in physics and solving abstract trigonometric equations, which begin in high school.

Spherical trigonometry

Later, when science reached the next level of development, formulas with sine, cosine, tangent, cotangent began to be used in spherical geometry, where different rules apply, and the sum of the angles in a triangle is always more than 180 degrees. This section is not studied at school, but it is necessary to know about its existence at least because earth's surface, and the surface of any other planet is convex, which means that any surface marking will be in three-dimensional space"arc-shaped".

Take the globe and the thread. Attach the thread to any two points on the globe so that it is taut. Please note - it has taken on the shape of an arc. Spherical geometry deals with such forms, which is used in geodesy, astronomy and other theoretical and applied fields.

Right triangle

Having learned a little about the ways of using trigonometry, let's return to basic trigonometry in order to further understand what sine, cosine, tangent are, what calculations can be performed with their help and what formulas to use.

The first step is to understand the concepts related to right triangle. First, the hypotenuse is the side opposite the 90 degree angle. It is the longest. We remember that according to the Pythagorean theorem, its numerical value equal to the root of the sum of the squares of the other two sides.

For example, if the two sides are 3 and 4 centimeters respectively, the length of the hypotenuse will be 5 centimeters. By the way, the ancient Egyptians knew about this about four and a half thousand years ago.

The two remaining sides, which form a right angle, are called legs. In addition, we must remember that the sum of the angles in a triangle in a rectangular coordinate system is equal to 180 degrees.

Definition

Finally, with a firm understanding of the geometric basis, one can turn to the definition of sine, cosine and tangent of an angle.

The sine of an angle is the ratio of the opposite leg (i.e., the side opposite the desired angle) to the hypotenuse. The cosine of an angle is the ratio of the adjacent side to the hypotenuse.

Remember that neither sine nor cosine can be greater than one! Why? Because the hypotenuse is by default the longest. No matter how long the leg is, it will be shorter than the hypotenuse, which means their ratio will always be less than one. Thus, if in your answer to a problem you get a sine or cosine with a value greater than 1, look for an error in the calculations or reasoning. This answer is clearly incorrect.

Finally, the tangent of an angle is the ratio of the opposite side to the adjacent side. Dividing the sine by the cosine will give the same result. Look: according to the formula, we divide the length of the side by the hypotenuse, then divide by the length of the second side and multiply by the hypotenuse. Thus, we get the same relationship as in the definition of tangent.

Cotangent, accordingly, is the ratio of the side adjacent to the corner to the opposite side. We get the same result by dividing one by the tangent.

So, we have looked at the definitions of what sine, cosine, tangent and cotangent are, and we can move on to formulas.

The simplest formulas

In trigonometry you cannot do without formulas - how to find sine, cosine, tangent, cotangent without them? But this is exactly what is required when solving problems.

The first formula you need to know when starting to study trigonometry says that the sum of the squares of the sine and cosine of an angle is equal to one. This formula is a direct consequence of the Pythagorean theorem, but it saves time if you need to know the size of the angle rather than the side.

Many students cannot remember the second formula, which is also very popular when solving school problems: the sum of one and the square of the tangent of an angle is equal to one divided by the square of the cosine of the angle. Take a closer look: this is the same statement as in the first formula, only both sides of the identity were divided by the square of the cosine. It turns out that a simple mathematical operation does trigonometric formula completely unrecognizable. Remember: knowing what sine, cosine, tangent and cotangent are, transformation rules and several basic formulas, you can at any time derive the required more complex formulas on a sheet of paper.

Formulas for double angles and addition of arguments

Two more formulas that you need to learn are related to the values ​​of sine and cosine for the sum and difference of angles. They are presented in the figure below. Please note that in the first case, sine and cosine are multiplied both times, and in the second, the pairwise product of sine and cosine is added.

There are also formulas associated with arguments in the form double angle. They are completely derived from the previous ones - as a training try to get them yourself by taking the alpha angle equal to the angle beta.

Finally, note that double angle formulas can be rearranged to reduce the power of sine, cosine, tangent alpha.

Theorems

The two main theorems in basic trigonometry are the sine theorem and the cosine theorem. With the help of these theorems, you can easily understand how to find the sine, cosine and tangent, and therefore the area of ​​the figure, and the size of each side, etc.

The sine theorem states that by dividing the length of each side of a triangle by the opposite angle, we get same number. Moreover, this number will be equal to two radii of the circumscribed circle, that is, the circle containing all the points of a given triangle.

The cosine theorem generalizes the Pythagorean theorem, projecting it onto any triangles. It turns out that from the sum of the squares of the two sides, subtract their product multiplied by the double cosine of the adjacent angle - the resulting value will be equal to the square of the third side. Thus, the Pythagorean theorem turns out to be a special case of the cosine theorem.

Careless mistakes

Even knowing what sine, cosine and tangent are, it is easy to make a mistake due to absent-mindedness or an error in the simplest calculations. To avoid such mistakes, let's take a look at the most popular ones.

Firstly, you shouldn't convert fractions to decimals until you get the final result - you can leave the answer as common fraction, unless otherwise stated in the conditions. Such a transformation cannot be called a mistake, but it should be remembered that at each stage of the problem new roots may appear, which, according to the author’s idea, should be reduced. In this case, you will waste your time on unnecessary mathematical operations. This is especially true for values ​​such as the root of three or the root of two, because they are found in problems at every step. The same goes for rounding “ugly” numbers.

Further, note that the cosine theorem applies to any triangle, but not the Pythagorean theorem! If you mistakenly forget to subtract twice the product of the sides multiplied by the cosine of the angle between them, you will not only get a completely wrong result, but you will also demonstrate a complete lack of understanding of the subject. This is worse than a careless mistake.

Thirdly, do not confuse the values ​​for angles of 30 and 60 degrees for sines, cosines, tangents, cotangents. Remember these values, because the sine of 30 degrees is equal to the cosine of 60, and vice versa. It is easy to confuse them, as a result of which you will inevitably get an erroneous result.

Application

Many students are in no hurry to start studying trigonometry because they do not understand its practical meaning. What is sine, cosine, tangent for an engineer or astronomer? These are concepts that make it possible to calculate the distance to distant stars, predict the fall of a meteorite, or send a research probe to another planet. Without them, it is impossible to build a building, design a car, calculate the load on a surface or the trajectory of an object. And these are just the most obvious examples! After all, trigonometry in one form or another is used everywhere, from music to medicine.

In conclusion

So you're sine, cosine, tangent. You can use them in calculations and successfully solve school problems.

The whole point of trigonometry comes down to the fact that using the known parameters of a triangle you need to calculate the unknowns. There are six parameters in total: the length of three sides and the size of three angles. The only difference in the tasks lies in the fact that different input data are given.

You now know how to find sine, cosine, tangent based on the known lengths of the legs or hypotenuse. Since these terms mean nothing more than a ratio, and a ratio is a fraction, main goal The trigonometric problem becomes finding the roots of an ordinary equation or a system of equations. And here regular school mathematics will help you.


In this article we will take a comprehensive look. Basic trigonometric identities represent equalities that establish a connection between sine, cosine, tangent and cotangent of one angle, and allow one to find any of these trigonometric functions through a known other.

Let us immediately list the main trigonometric identities that we will analyze in this article. Let's write them down in a table, and below we'll give the output of these formulas and provide the necessary explanations.

Page navigation.

Relationship between sine and cosine of one angle

Sometimes they do not talk about the main trigonometric identities listed in the table above, but about one single basic trigonometric identity type . The explanation for this fact is quite simple: the equalities are obtained from the main trigonometric identity after dividing both of its parts by and respectively, and the equalities And follow from the definitions of sine, cosine, tangent and cotangent. We'll talk about this in more detail in the following paragraphs.

That is, it is the equality that is of particular interest, which was given the name of the main trigonometric identity.

Before proving the main trigonometric identity, we give its formulation: the sum of the squares of the sine and cosine of one angle is identically equal to one. Now let's prove it.

The basic trigonometric identity is very often used when converting trigonometric expressions. It allows the sum of the squares of the sine and cosine of one angle to be replaced by one. No less often, the basic trigonometric identity is used in the reverse order: unit is replaced by the sum of the squares of the sine and cosine of any angle.

Tangent and cotangent through sine and cosine

Identities connecting tangent and cotangent with sine and cosine of one angle of view and follow immediately from the definitions of sine, cosine, tangent and cotangent. Indeed, by definition, sine is the ordinate of y, cosine is the abscissa of x, tangent is the ratio of the ordinate to the abscissa, that is, , and the cotangent is the ratio of the abscissa to the ordinate, that is, .

Thanks to such obviousness of the identities and Tangent and cotangent are often defined not through the ratio of abscissa and ordinate, but through the ratio of sine and cosine. So the tangent of an angle is the ratio of the sine to the cosine of this angle, and the cotangent is the ratio of the cosine to the sine.

In conclusion of this paragraph, it should be noted that the identities and take place for all angles at which the trigonometric functions included in them make sense. So the formula is valid for any , other than (otherwise the denominator will have zero, and we did not define division by zero), and the formula - for all , different from , where z is any .

Relationship between tangent and cotangent

An even more obvious trigonometric identity than the previous two is the identity connecting the tangent and cotangent of one angle of the form . It is clear that it holds for any angles other than , otherwise either the tangent or the cotangent are not defined.

Proof of the formula very simple. By definition and from where . The proof could have been carried out a little differently. Since , That .

So, the tangent and cotangent of the same angle at which they make sense are .

Formulas for the sum and difference of sines and cosines for two angles α and β allow us to move from the sum of these angles to the product of angles α + β 2 and α - β 2. Let us immediately note that you should not confuse the formulas for the sum and difference of sines and cosines with the formulas for sines and cosines of the sum and difference. Below we list these formulas, give their derivations and show examples of application for specific tasks.

Yandex.RTB R-A-339285-1

Formulas for the sum and difference of sines and cosines

Let's write down what the sum and difference formulas look like for sines and cosines

Sum and difference formulas for sines

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Sum and difference formulas for cosines

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

These formulas are valid for any angles α and β. The angles α + β 2 and α - β 2 are called the half-sum and half-difference of the angles alpha and beta, respectively. Let us give the formulation for each formula.

Definitions of formulas for sums and differences of sines and cosines

Sum of sines of two angles is equal to twice the product of the sine of the half-sum of these angles and the cosine of the half-difference.

Difference of sines of two angles is equal to twice the product of the sine of the half-difference of these angles and the cosine of the half-sum.

Sum of cosines of two angles is equal to twice the product of the cosine of the half-sum and the cosine of the half-difference of these angles.

Difference of cosines of two angles is equal to twice the product of the sine of the half-sum and the cosine of the half-difference of these angles, taken with a negative sign.

Deriving formulas for the sum and difference of sines and cosines

To derive formulas for the sum and difference of the sine and cosine of two angles, addition formulas are used. Let's list them below

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α sin β cos (α - β) = cos α cos β + sin α sin β

Let’s also imagine the angles themselves as a sum of half-sums and half-differences.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

We proceed directly to the derivation of the sum and difference formulas for sin and cos.

Derivation of the formula for the sum of sines

In the sum sin α + sin β, we replace α and β with the expressions for these angles given above. We get

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Now we apply the addition formula to the first expression, and to the second - the formula for the sine of angle differences (see formulas above)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Open the brackets, add similar terms and get the required formula

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

The steps to derive the remaining formulas are similar.

Derivation of the formula for the difference of sines

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Derivation of the formula for the sum of cosines

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Derivation of the formula for the difference of cosines

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Examples of solving practical problems

First, let's check one of the formulas by substituting specific angle values ​​into it. Let α = π 2, β = π 6. Let us calculate the value of the sum of the sines of these angles. First, we will use the table of basic values ​​of trigonometric functions, and then we will apply the formula for the sum of sines.

Example 1. Checking the formula for the sum of sines of two angles

α = π 2, β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 3 2 3 2 = 3 2

Let us now consider the case when the angle values ​​differ from the basic values ​​presented in the table. Let α = 165°, β = 75°. Let's calculate the difference between the sines of these angles.

Example 2. Application of the difference of sines formula

α = 165 °, β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 sin 45° cos 120° = 2 2 2 - 1 2 = 2 2

Using the formulas for the sum and difference of sines and cosines, you can move from the sum or difference to the product of trigonometric functions. Often these formulas are called formulas for moving from a sum to a product. The formulas for the sum and difference of sines and cosines are widely used in solving trigonometric equations and in converting trigonometric expressions.

If you notice an error in the text, please highlight it and press Ctrl+Enter

Trigonometric identities- these are equalities that establish a connection between sine, cosine, tangent and cotangent of one angle, which allows you to find any of these functions, provided that any other is known.

tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

tg \alpha \cdot ctg \alpha = 1

This identity says that the sum of the square of the sine of one angle and the square of the cosine of one angle is equal to one, which in practice makes it possible to calculate the sine of one angle when its cosine is known and vice versa.

When converting trigonometric expressions, this identity is very often used, which allows you to replace the sum of the squares of the cosine and sine of one angle with one and also perform the replacement operation in the reverse order.

Finding tangent and cotangent using sine and cosine

tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

These identities are formed from the definitions of sine, cosine, tangent and cotangent. After all, if you look at it, then by definition the ordinate y is a sine, and the abscissa x is a cosine. Then the tangent will be equal to the ratio \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha), and the ratio \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- will be a cotangent.

Let us add that only for such angles \alpha at which the trigonometric functions included in them make sense, the identities will hold, ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

For example: tg \alpha = \frac(\sin \alpha)(\cos \alpha) is valid for angles \alpha that are different from \frac(\pi)(2)+\pi z, A ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- for an angle \alpha other than \pi z, z is an integer.

Relationship between tangent and cotangent

tg \alpha \cdot ctg \alpha=1

This identity is valid only for angles \alpha that are different from \frac(\pi)(2) z. Otherwise, either cotangent or tangent will not be determined.

Based on the above points, we obtain that tg \alpha = \frac(y)(x), A ctg \alpha=\frac(x)(y). It follows that tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Thus, the tangent and cotangent of the same angle at which they make sense are mutually inverse numbers.

Relationships between tangent and cosine, cotangent and sine

tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)- the sum of the square of the tangent of the angle \alpha and 1 is equal to the inverse square of the cosine of this angle. This identity is valid for all \alpha other than \frac(\pi)(2)+ \pi z.

1+ctg^(2) \alpha=\frac(1)(\sin^(2)\alpha)- the sum of 1 and the square of the cotangent of the angle \alpha is equal to the inverse square of the sine given angle. This identity is valid for any \alpha different from \pi z.

Examples with solutions to problems using trigonometric identities

Example 1

Find \sin \alpha and tg \alpha if \cos \alpha=-\frac12 And \frac(\pi)(2)< \alpha < \pi ;

Show solution

Solution

The functions \sin \alpha and \cos \alpha are related by the formula \sin^(2)\alpha + \cos^(2) \alpha = 1. Substituting into this formula \cos \alpha = -\frac12, we get:

\sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

This equation has 2 solutions:

\sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

By condition \frac(\pi)(2)< \alpha < \pi . In the second quarter the sine is positive, so \sin \alpha = \frac(\sqrt 3)(2).

In order to find tan \alpha, we use the formula tg \alpha = \frac(\sin \alpha)(\cos \alpha)

tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

Example 2

Find \cos \alpha and ctg \alpha if and \frac(\pi)(2)< \alpha < \pi .

Show solution

Solution

Substituting into the formula \sin^(2)\alpha + \cos^(2) \alpha = 1 given number \sin \alpha=\frac(\sqrt3)(2), we get \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. This equation has two solutions \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

By condition \frac(\pi)(2)< \alpha < \pi . In the second quarter the cosine is negative, so \cos \alpha = -\sqrt\frac14=-\frac12.

In order to find ctg \alpha , we use the formula ctg \alpha = \frac(\cos \alpha)(\sin \alpha). We know the corresponding values.

ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).