Физические химические свойства углерода кремния. Химические свойства соединений кремния

Введение

Глава 2. Химические соединения углерода

2.1 Кислородные производные углерода

2.1.1 Степень окисления +2

2.1.2 Степень окисления +4

2.3 Карбиды металлов

2.3.1 Карбиды, растворимые в воде и разбавленных кислотах

2.3.2 Карбиды, нерастворимые в воде и в разбавленных кислотах

Глава 3. Соединения кремния

3.1 Кислородные соединения кремния

Список литературы

Введение

Химия - одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

По определению Д.И. Менделеева (1871), "химию в современном ее состоянии можно... назвать учением об элементах".

Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемиа (греческое Chemia, встречается у Плутарха), которое производится от "хем" или "хаmе" - черный и означает "наука черной земли" (Египта), "египетская наука" .

Современная химия тесно связана, как с другими естественными науками, так и со всеми отраслями народного хозяйства.

Качественная особенность химической формы движения материи, и ее переходов в другие формы движения обуславливает разносторонность химической науки и ее связи с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химиейи химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии, и сама испытывала и испытывает её влияние.

Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества).

До конца 18 века термины "неорганическая химия" и "органическая химия" указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т.е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ. Через органическую и биоорганическую химию химия граничит с биохимией и далее с биологией, т.е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.

Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством её отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Как уже было сказано выше, химия рассматривает химические элементы и образуемые ими вещества, а также законы, которым подчиняются эти превращения. Один из этих аспектов (а именно, химические соединения на основе кремния и углерода) и будет рассмотрен мной в данной работе.

Глава 1. Кремний и углерод - химические элементы

1.1 Общие сведения об углероде и кремнии

Углерод (С) и кремний (Si) входят в группу IVA.

Углерод не принадлежит к числу очень распространенных элементов. Несмотря на это, значение его огромно. Углерод-основа жизни на земле. Он входит в состав весьма распространенных в природе карбонатов (Са, Zn, Mg, Fe и др.), в атмосфере существует в виде СО 2 , встречается в виде природных углей (аморфного графита), нефти и природного газа, а также простых веществ (алмаза, графита).

Кремний по распространенности в земной коре занимает второе место (после кислорода). Если углерод - основа жизни, то кремний-основа земной коры. Он встречается в громадном многообразии силикатов (рис 4) и алюмосиликатов, песка.

Аморфный кремний - порошок бурого цвета. Последний легко получить в кристаллическом состоянии в виде серых твердых, но довольно хрупких крис таллов. Кристаллический кремний - полупроводник.

Таблица 1. Общие химические данные об углероде и кремнии.

Устойчивая при обычной температуре модификация углерода - графит - представляет собой непрозрачную, серую жирную массу. Алмаз - самое твердое вещество на земле - бесцветен и прозрачен. Кристаллические структуры графита и алмаза приведены на рис.1.

Рисунок 1. Структура алмаза (а); структура графита (б)

Углерод и кремний имеют свои определенные производные.

Таблица 2. Наиболее характерные производные углерода и кремния

1.2 Получение, химические свойства и применение простых веществ

Кремний получают восстановлением оксидов углеродом; для получения в особо чистом состояний после восстановления вещество переводят в тетрахлорид и снова восстанавливают (водородом). Затем сплавляют в слитки и подвергают очистке методом зонной плавки. Слиток металла нагревают с одного конца так, чтобы в нем образовалась зона расплавленного металла. При перемещении зоны к другому концу слитка примесь, растворяясь в расплавленном металле лучше, чем в твердом, выводится, и тем самым металл очищается.

Углерод инертен, но при очень высокой, температуре (в аморфном состоянии) взаимодействует с большинством металлов с образованием твердых растворов или карбидов (СаС 2 , Fе 3 С и т.д.), а также со многими металлоидами, например:

2С+ Са = СaC 2, С + 3Fe = Fe 3 C,

Кремний более реакционно способен. С фтором он реагирует уже при обычной температуре: Si+2F 2 =SiF 4

У кремния очень большое сродство также и к кислороду:

Реакция с хлором и серой протекает около 500 К. При очень высокой температуре кремний взаимодействует с азотом и углеродом:

С водородом кремний непосредственно не взаимодействует. Кремний растворяется в щелочах:

Si+2NaOH+H 2 0=Na 2 Si0 3 +2H 2 .

Кислоты, кроме плавиковой, на него не действуют. С HF идет реакция

Si+6HF=H 2 +2H 2 .

Углерод в составе различных углей, нефти, природных (в основном СН4), а также искусственно полученных газов - важнейшая топливная база нашей планеты

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

При нормальных условиях аллотропные модификации углерода – графит и алмаз – довольно инертны. Но при повышении t активно вступают в химические реакции с простыми и сложными веществами.

Химические свойства углерода

Так как электроотрицательность углерода невысока, то простые вещества являются хорошими восстановителями. Легче окисляется мелкокристаллический углерод, труднее – графит, ещё труднее – алмаз.

Аллотропные модификации углерода окисляются кислородом (горят) при определённых температурах воспламенения: графит воспламеняется при 600 °С, алмаз – при 850-1000 °С. Если кислород находится в избытке, образуется оксид углерода(IV), если в недостатке – оксид углерода(II):

С + О2 = СО2

2С + О2 = 2СО

Углерод восстанавливает оксиды металлов. При этом получают металлы в свободном виде. Например, при прокаливании оксида свинца с коксом выплавляется свинец:

PbO + C = Pb + CO

восстановитель: C0 – 2e => C+2

окислитель: Pb+2 + 2e => Pb0

Окислительные свойства углерод проявляет и по отношению к металлам. При этом он образует разного рода карбиды. Так, с алюминием проходит реакции при высокой температуре:

3C + 4Al = Al4C3

C0 + 4e => C-4 3

Al0 – 3e => Al+3 4

Химические свойства соединений углерода

1) Так как прочность монооксида углерода велика, то он вступает в химические реакции при высоких температурах. При значительном нагревании проявляются высокие восстановительные свойства монооксида углерода. Так, он вступает в реакцию с оксидами металлов:

CuO + CO => Cu + CO2

При повышенной температуре (700 °С) он воспламеняется в кислороде и горит голубым пламенем. По этому пламени можно узнать, что в результате реакции образуется углекислый газ:

CO + O2 => CO2

2) Двойные связи в молекуле диоксида углерода достаточно прочны. Для их разрыва требуется значительная энергия (525,6 кДж/моль). Поэтому диоксид углерода довольно инертен. Реакции, в которые он вступает, часто происходят при высоких температурах.

Диоксид углерода проявляет кислотные свойства в реакции с водой. При этом образуется раствор угольной кислоты. Реакция происходит обратимо.

Диоксид углерода как кислотный оксид реагирует со щелочами и основными оксидами. При пропускании углекислого газа через раствор щёлочи может образоваться либо средняя, либо кислая соль.

3) Угольная кислота обладает всеми свойствами кислот и взаимодействует со щелочами и основными оксидами.

Химические свойства кремния

Кремний более активен, чем углерод, и окисляется кислородом уже при 400 °С. Окислять кремний могут другие неметаллы. Эти реакции обычно идут при более высокой температуре, чем с кислородом. В таких условиях кремний взаимодействует с углеродом, в частности с графитом. При этом образуется карборунд SiC– очень твёрдое вещество, уступающее по твёрдости только алмазу.

Кремний может быть и окислителем. Это проявляется в реакциях с активными металлами. Например:

Si + 2Mg = Mg2Si

Более высокая активность кремния по сравнению с углеродом проявляется в том, что он, в отличие от углерода, вступает в реакции с щелочами:

Si + NaOH + H2O => Na2SiO3 + H2

Химические свойства соединений кремния

1) Прочные связи между атомами в кристаллической решётке диоксида кремния объясняют невысокую химическую активность. Реакции, в которые вступает этот оксид, происходят при высоких температурах.

Оксид кремния является кислотным оксидом. Как известно, в реакцию с водой он не вступает. Его кислотная природа проявляется в реакции со щелочами и основными оксидами:

SiO2 + 2NaOH = Na2SiO3 + H2O

Реакции с основными оксидами проходят при высоких температурах.

Окислительные свойства оксид кремния проявляет слабо. Он восстанавливается некоторыми активными металлами.

Краткая сравнительная характеристика элементов углерода и кремния представлена в таблице 6.

Таблица 6

Сравнительная характеристика углерода и кремния

Критерии сравнения Углерод – С Кремний – Si
положение в периодической системе химических элементов , 2-ой период, IV группа, главная подгруппа , 3-ий период, IV группа, главная подгруппа
электронная конфигурация атомов
валентные возможности II – в стационарном состоянии IV – в возбужденном состоянии
возможные степени окисления , , , , , ,
высший оксид , кислотный , кислотный
высший гидроксид – слабая нестойкая кислота () или – слабая кислота, имеет полимерную структуру
водородное соединение – метан (углеводород) – силан, неустойчив

Углерод . Для углерода-элемента характерна аллотропия. Углерод существует в форме следующих простых веществ: алмаз, графит, карбин, фуллерен, из которых термодинамически устойчивым является только графит. Уголь и сажу можно рассматривать как аморфные разновидности графита.

Графит тугоплавок, мало летуч, при обычной температуре химически инертен, представляет собой непрозрачное, мягкое вещество, слабо проводящее ток. Структура графита слоистая.

Аламаз – чрезвычайно твердое, химически инертное (до 900 °С) вещество, не проводит тока и плохо проводит тепло. Структура алмаза тетраэдрическая (каждый атом в тетраэдре окружен четырьмя атомами и т.д.). Поэтому алмаз – простейший полимер, макромолекула которого состоит из одних атомов углерода.

Карбин имеет линейную структуру ( –карбин, полиин) или ( – карбин, полиен). Представляет собой черный порошок, обладает полупроводниковыми свойствами. Под действием света электропроводность карбина увеличивается, а при температуре карбин превращается в графит. Химически более активен, чем графит. Синтезирован в начале 60-х годов XX в., позже был обнаружен в некоторых метеоритах.

Фуллерен – аллотропная модификация углерода, образованная молекулами , имеющими конструкцию типа “футбольный мяч”. Были синтезированы молекулы , и другие фуллерены. Все фуллерены представляют собой замкнутые структуры из атомов углерода в гибридном состоянии. Негибридизованные электроны связей делокализованы как в ароматических соединениях. Кристаллы фуллерена относятся к молекулярному типу.



Кремний . Для кремния не характерно связей, не характерно существование в гибридном состоянии. Поэтому существует только одна устойчивая аллотропная модификация кремния, кристаллическая решетка которой подобна решетке алмаза. Кремний – твердое (по шкале Мооса твердость равна 7), тугоплавкое (), очень хрупкое вещество темно-серого цвета с металлическим блеском при стандартных условиях – полупроводник. Химическая активность зависит от размеров кристаллов (крупнокристаллический менее активен, чем аморфный).

Реакционная способность углерода зависит от аллотропной модификации. Углерод в виде алмаза и графита довольно инертен, устойчив к действию кислот, щелочей, что позволяет изготавливать из графита тигли, электроды и т.д. Более высокую реакционную способность углерод проявляет в виде угля и сажи.

Кристаллический кремний достаточно инертен, в аморфной форме – более активен.

Основные виды реакций, отражающих химические свойства углерода и кремния, приведены в таблице 7.


Таблица 7

Основные химические свойства углерода и кремния

реакция с углерод реакция с кремний
простыми веществами кислородом кислородом
галогенами галогенами
серой углеродом
водородом водородом не реагирует
металлами металлами
сложными веществами оксидами металлов щелочами
водяным паром кислотами не реагирует
кислотами

Вяжущие материалы

Вяжущие материалы минеральные или органические строительные материалы, применяемые для изготовления бетонов, скрепления отдельных элементов строительных конструкций, гидроизоляции и др .

Минеральные вяжущие материалы (МВМ)– тонкоизмельченные порошкообразные материалы (цементы, гипс, известь и др.), образущие при смешивании с водой (в отдельных случаях – с растворами солей, кислот, щелочей) пластичную удобоукладываемую массу, затвердевающую в прочное камневидное тело и связывающую частицы твердых заполнителей и арматуру в монолитное целое.

Твердение МВМ осуществляется вследствие процессов растворения, образования пересыщенного раствора и коллоидной массы; последняя частично или полностью кристаллизуется.

Классификация МВМ:

1. гидравлические вяжущие материалы:

При смешивании с водой (затворении) твердеют и продолжают сохранять или наращивать свою прочность в воде. К ним относятся различные цементы и гидравлическая известь. При твердении гидравлической извести происходит взаимодействие СаО с водой и углекислым газом воздуха и кристаллизация образующегося продукта. Применяют в строительстве наземных, подземных и гидротехнических сооружений, подвергающихся постоянному воздействию воды.

2. воздушные вяжущие материалы:

При смешивании с водой твердеют и сохраняют прочность только на воздухе. К ним относятся воздушная известь, гипсово-ангидритные и магнезиальные воздушные вяжущие.

3. кислотоупорные вяжущие материалы:

Состоят в основном из кислотоупорного цемента, содержащего тонкоизмельченную смесь кварцевого песка и ; их затворяют, как правило, водными растворами силиката натрия или калия, они длительно сохраняют свою прочность при воздействии кислот. При твердении осуществляется реакция . Применяют для производства кислотоупорных замазок, строительных растворов и бетонов при строительстве химических предприятий.

4. вяжущие материалы автоклавного твердения:

Состоят из известково-кремнеземистых и известково-нефелиновых вяжущих (известь, кварцевый песок, нефелиновый шлам) и твердеют при обработке в автоклаве (6-10 ч, давление пара 0,9-1,3 МПа). К ним относят также песчанистые портландцементы и другие вяжущие на основе извести, зол и малоактивных шламов. Применяют в производстве изделий из силикатных бетонов (блоки, силикатный кирпич и др.).

5. фосфатные вяжущие материалы:

Состоят из специальных цементов; их затворяют фосфорной кислотой с образованием пластичной массы, постепенно затвердевающей в монолитное тело, и сохраняющей свою прочность при температурах выше 1000 °С. Обычно используют титанофосфатный, цинкофосфатный, алюмофосфатный и др. цементы. Применяют для изготовления огнеупорной футеровочной массы и герметиков для высокотемпературной защиты металлических деталей и конструкций в производстве огнеупорных бетонов и др.

Органические вяжущие материалы (ОВМ)– вещества органического происхождения, способные переходить из пластичного состояния в твердое или малопластичное в результате полимеризации или поликонденсации.

По сравнению с МВМ они менее хрупки, имеют большую прочность при растяжении. К ним относятся продукты, образующиеся при переработке нефти (асфальт, битум), продукты термического разложения древесины (деготь), а также синтетические термореактивные полиэфирные, эпоксидные, феноло-формальдегидные смолы. Применяют в строительстве дорог, мостов, полов производственных помещений, рулонных кровельных материалов, асфальтополимерныбетонов и др.

Химический знак кремния Si, атомный вес 28,086, заряд ядра +14. , как и , располагается в главной подгруппе IV группы, в третьем периоде. Это аналог углерода. Электронная конфигурация электронных слоев атома кремния ls 2 2s 2 2p 6 3s 2 3p 2 . Строение внешнего электронного слоя

Структура внешнего электронного слоя аналогична структуре атома углерода.
встречается в виде двух аллотропных видоизменений - аморфного и кристаллического.
Аморфный - порошок буроватого цвета, обладающий несколько большей химической активностью, чем кристаллический. При обычной температуре реагирует с фтором:
Si + 2F2 = SiF4 при 400° - с кислородом
Si + O2 = SiO2
в расплавах - с металлами:
2Mg + Si = Mg2Si
Кристаллический кремний - твердое хрупкое вещество с металлическим блеском. Он обладает хорошей тепло- и электропроводностью, легко растворяется в расплавленных металлах, образуя . Сплав кремния с алюминием называется силумином, сплав кремния с железом - ферросилицием. Плотность кремния 2,4. Температура плавления 1415°, температура кипения 2360°. Кристаллический кремний - вещество довольно инертное и в химические реакции вступает с трудом. С кислотами, несмотря на хорошо заметные металлические свойства, кремний не реагирует, а со щелочами вступает в реакцию, образуя соли кремниевой кислоты и :
Si + 2КОН + Н2О = K2SiO2 + 2H2

■ 36. В чем сходство и в чем различие электронных структур атомов кремния и углерода?
37. Как объяснить с точки зрения электронной структуры атома кремния, почему металлические свойства более характерны для кремния, чем для углерода?
38. Перечислите химические свойства кремния.

Кремний в природе. Двуокись кремния

В природе кремний распространен очень широко. Примерно 25% земной коры приходится на кремний. Значительная часть природного кремния представлена двуокисью кремния SiO2. В очень чистом кристаллическом состоянии двуокись кремния встречается в виде минерала, называемого горным хрусталем. Двуокись кремния и двуокись углерода по химическому составу являются аналогами, однако двуокись углерода - это газ, а двуокись кремния - твердое вещество. В отличие от молекулярной кристаллической решетки СO2 двуокись кремния SiO2 кристаллизуется в виде атомной кристаллической решетки, каждая ячейка которой представляет собой тетраэдр с атомом кремния в центре и атомами кислорода по углам. Это объясняется тем, что атом кремния имеет больший радиус, чем атом углерода, и вокруг него могут разместиться не 2, а 4 кислородных атома. Различием в строении кристаллической решетки объясняется различие свойств этих веществ. На рис. 69 показаны внешний вид кристалла природного кварца, состоящего из чистой двуокиси кремния, и ее структурная формула.

Рис. 60. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б)

Кристаллическая двуокись кремния наиболее часто встречается в виде песка, который имеет белый цвет, если не загрязнен глинистыми примесями желтого цвета. Помимо песка, двуокись кремния часто встречается в виде очень твердого минерала - кремния (гидратированная двуокись кремния). Кристаллическая двуокись кремния, окрашенная в различные примеси, образует драгоценные и полудрагоценные камни - агат, аметист, яшму. Почти чистая двуокись кремния встречается также в виде кварца и кварцита. Свободной двуокиси кремния в земной коре 12%, в составе различных горных пород - около 43%. В общей сложности более 50% земной коры состоит из двуокиси кремния.
Кремний входит в состав самых различных горных пород и минералов - глины, гранитов, сиенитов, слюд, полевых шпатов и пр.

Твердая двуокись углерода, не плавясь, возгоняется при -78,5°. Температура плавления двуокиси кремния около 1.713°. Она весьма тугоплавка. Плотность 2,65. Коэффициент расширения двуокиси кремния очень мал. Это имеет очень большое значение при применении посуды из кварцевого стекла. В воде двуокись кремния не растворяется и с ней не реагирует, несмотря на , что это кислотный окисел и ему соответствует кремниевая кислота H2SiO3. Двуокись углерода в воде, как известно, растворима. С кислотами, кроме плавиковой кислоты HF, двуокись кремния не реагирует, со щелочами дает соли.

Рис. 69. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б).
При накаливании двуокиси кремния с углем происходит восстановление кремния, а затем его соединение с углеродом и образование карборунда по уравнению:
SiO2 + 2С = SiC + СО2. Карборунд обладает высокой твердостью, к кислотам устойчив, а щелочами разрушается.

■ 39. По каким свойствам двуокиси кремния можно судить о ее кристаллической решетке?
40. В виде каких минералов двуокись кремния встречается в природе?
41. Что такое карборунд?

Кремниевая кислота. Силикаты

Кремниевая кислота H2SiO3 является кислотой очень слабой и малоустойчивой. При нагревании она постепенно разлагается на воду и двуокись кремния:
H2SiO3 = H2O + SiO2

В воде кремниевая кислота практически нерастворима, но может легко давать .
Кремниевая кислота образует соли, которые называются силикатами. широко встречаются в природе. Природные - это довольно сложные . Состав их обычно изображается как соединение нескольких окислов. Если в состав природных силикатов входит окись алюминия, они называются алюмосиликатами. Таковы белая глина, (каолин) Al2O3 · 2SiO2 · 2H2O, полевой шпат К2O · Al2O3 · 6SiO2, слюда
К2O · Al2O3 · 6SiO2 · 2Н2O. Многие природные в чистом виде являются драгоценными камнями, например аквамарин, изумруд и др.
Из искусственных силикатов следует отметить силикат натрия Na2SiO3 - один из немногих растворимых в воде силикатов. Его называют растворимым стеклом, а раствор - жидким стеклом.

Силикаты широко применяются в технике. Растворимым стеклом пропитывают ткани и древесину для предохранения их от воспламенения. Жидкое входит в состав огнеупорных замазок для склеивания стекла, фарфора, камня. Силикаты и являются основой в производстве стекла, фарфора, фаянса, цемента, бетона, кирпича и различных керамических изделий. В растворе силикаты легко гидролизуются.

■ 42. Что такое ? Чем они отличаются от силикатов?
43. Что такое жидкое и для каких целей оно применяется?

Стекло

Сырьем для производства стекла являются сода Na2CO3, известняк СаСO3 и песок SiO2. Все составные части стеклянной шихты тщательно очищают, смешивают и сплавляют при температуре около 1400°. В процессе сплавления протекают следующие реакции:
Na2CO3 + SiO2= Na2SiO3 + CO2

CaCO3 + SiO2 = CaSiO 3+ CO2
Фактически в состав стекла входят силикаты натрия и кальция, а также избыток SO2, поэтому состав обычного оконного стекла: Na2O · CaO · 6SiO2. Стеклянную шихту нагревают при температуре 1500° до тех пор, пока полностью не удалится двуокись углерода. Затем охлаждают до температуры 1200°, при которой оно становится вязким. Как всякое аморфное вещество, стекло размягчается и затвердевает постепенно, поэтому оно является хорошим пластическим материалом. Вязкую стеклянную массу пропускают через щель, в результате чего образуется стеклянный лист. Горячий стеклянный лист вытягивают валками, доводя до определенных размеров и постепенно охлаждая током воздуха. Затем его обрезают по краям и разрезают на листы определенного формата.

■ 44. Приведите уравнения реакций, протекающих при получении стекла, и состав оконного стекла.

Стекло - вещество аморфное, прозрачное, в воде практически нерастворимо, но если измельчить его в мелкую пыль и смешать с небольшим количеством воды, в полученной смеси с помощью фенолфталеина можно обнаружить щелочь. При длительном хранении щелочей в стеклянной посуде избыток SiO2 в стекле очень медленно реагирует со щелочью и стекло постепенно утрачивает прозрачность.
Стекло стало известно людям более чем за 3000 лет до нашей эры. В древности получали стекла почти такого же состава, как и в настоящее время, но древние мастера руководствовались лишь собственной интуицией. В 1750 г. М. В. сумел разработать научные основы получения стекла. За 4 года М. В. собрал много рецептов изготовления разных стекол, особенно цветных. На построенной им стекольной фабрике было изготовлено большое количество образцов стекла, которые сохранились до наших дней. В настоящее время используются стекла разного состава, обладающие различными свойствами.

Кварцевое стекло состоит из почти чистой двуокиси кремния и выплавляется из горного хрусталя. Его очень важной особенностью является , что коэффициент расширения у него незначительный, почти в 15 раз меньше, чем у обычного стекла. Посуду из такого стекла можно раскалить докрасна в пламени горелки и после этого опустить в холодную воду; при этом никаких изменений со стеклом не произойдет. Кварцевое стекло не задерживает ультрафиолетовых лучей, а если окрасить его никелевыми солями в черный цвет, то оно будет задерживать все видимые лучи спектра, но для ультрафиолетовых лучей останется прозрачным.
На кварцевое стекло не действуют кислоты и , но щелочи его заметно разъедают. Кварцевое стекло более хрупко, чем обычное. Лабораторное стекло содержит около 70% SiО2, 9% Na2О, 5% К2О 8% СаО, 5% Аl2O3, 3% В2O3 (состав стекол приводится не для запоминания).

В промышленности находят применение стекла иен-ское и пирекс. Иенское стекло содержит около 65% Si02, 15% В2O3, 12% ВаО, 4% ZnO, 4% Аl2O3. Оно прочно, устойчиво к механическим воздействиям, имеет малый коэффициент расширения, устойчиво к щелочам.
Стекло пирекс содержит 81% SiO2, 12% В2O3, 4% Na2O, 2% Аl2O3, 0,5% As2O3, 0,2% К2O, 0,3% СаО. Оно обладает такими же свойствами, как иенское стекло, но в еще большей степени, особенно после закалки, зато менее устойчиво к щелочам. Из стекла пирекс изготовляют предметы домашнего обихода, подвергающиеся нагреванию, а также детали некоторых промышленных установок, работающие при низких и высоких температурах.

Разные качества стеклу придают некоторые добавки. Например, примеси окислов ванадия дают стекло, полностью задерживающее ультрафиолетовые лучи.
Получают также и стекло, окрашенное в различные цвета. Еще М. В. изготовил несколько тысяч образцов цветного стекла разной окраски и оттенков для своих мозаичных картин. В настоящее время методы окраски стекла детально разработаны. Соединения марганца окрашивают стекло в фиолетовый цвет, кобальта - в синий. , распыленное в массе стекла в виде коллоидных частиц, придает ему рубиновую окраску и т. д. Свинцовые соединения придают стеклу блеск, подобный блеску горного хрусталя, поэтому оно называется хрустальным. Такое стекло легко поддается обработке, огранке. Изделия из него очень красиво преломляют свет. При окраске этого стекла различными добавками получается цветное хрустальное стекло.

Если расплавленное стекло смешать с веществами, которые при разложении образуют большое количество газов, то последние, выделяясь, вспенивают стекло, образуя пеностекло. Такое стекло очень легкое, хорошо обрабатывается, является прекрасным электро- и тепло-изолятором. Оно было впервые получено проф. И. И. Китайгородским.
Вытягивая из стекла нити, можно получить так называемое стекловолокно. Если пропитать уложенное слоями стекловолокно синтетическими смолами, то получается очень прочный, не поддающийся гниению, прекрасно обрабатывающийся строительный материал, так называемый стеклотекстолит. Интересно, что чем тоньше стекловолокно, тем выше его прочность. Стекловолокно также применяется для изготовления спецодежды.
Стеклянная вата является ценным материалом, через который можно фильтровать сильные кислоты и щелочи, не фильтрующиеся через бумагу. Кроме того, стеклянная вата является хорошим теплоизолирующим веществом.

■ 44. От чего зависят свойства стекол разных видов?

Керамика

Из алюмосиликатов особенно важна белая глина - каолин, являющаяся основой для получения фарфора и фаянса. Производство фарфора - чрезвычайно древняя отрасль хозяйства. Родина фарфора - Китай. В России фарфор был получен впервые в XVIIIв. Д, И. Виноградовым.
Сырьем для получения фарфора и фаянса, помимо каолина, служат песок и . Смесь каолина, песка и воды подвергают тщательному тонкому размолу в шаровых мельницах, затем отфильтровывают избыток воды и хорошо вымешанную пластичную массу направляют на формовку изделий. После формовки изделия подвергают сушке и обжигу в туннельных печах непрерывного действия, где их сначала разогревают, затем обжигают и, наконец, охлаждают. После этого изделия проходят дальнейшую обработку - покрытие глазурью, нанесение рисунка керамическими красками. После каждой стадии изделия обжигают. В результате фарфор получается белым, гладким и блестящим. В тонких слоях он просвечивает. Фаянс порист и не просвечивает.

Из красной глины формуют кирпичи, черепицу, глиняную посуду, керамические кольца для насадки в поглотительных и промывных башнях разных химических производств, цветочные горшки. Их также обжигают, чтобы они не размягчались водой, стали механически прочными.

Цемент. Бетон

Соединения кремния служат основой для получения цемента - вяжущего материала, незаменимого в строительстве. Сырьем для получения цемента являются глина и известняк. Эту смесь обжигают в огромной наклонной трубчатой вращающейся печи, куда непрерывно загружают сырье. После обжига при 1200-1300° из отверстия, расположенного на другом конце печи, непрерывно выходит спекшаяся масса - клинкер. После размола клинкер превращается в . В состав цемента входят главным образом силикаты. Если смешать с водой до образования густой кашицы, а затем оставить на некоторое время на воздухе, то вступит в реакцию с веществами цемента, образуя кристаллогидраты и другие твердые соединения, что приводит к затвердеванию («схватыванию») цемента. Такой уже не переводится в прежнее состояние, поэтому до употребления цемент стараются беречь от воды. Процесс твердения цемента является длительным, и настоящую прочность он приобретает лишь через месяц. Правда, существуют разные сорта цемента. Рассмотренный нами обычный цемент называется силикатным, или портландцементом. Из глинозема, известняка и двуокиси кремния изготовляют быстро твердеющий глиноземистый цемент.

Если смешать цемент со щебнем или гравием, то получается бетон, являющийся уже самостоятельным строительным материалом. Щебень и гравий называются наполнителями. Бетон обладает высокой прочностью и выдерживает большие нагрузки. Он водостоек, огнестоек. При нагревании почти не теряет прочности, так как теплопроводность его очень мала. Бетон морозостоек, ослабляет радиоактивные излучения, поэтому его используют как строительный материал для гидротехнических сооружений, для защитных оболочек ядерных реакторов. Бетоном обмуровывают котлы. Если смешать цемент с пенообразователем, то образуется пронизанный множеством ячеек пенобетон. Такой бетон является хорошим звукоизолятором и еще меньше, чем обычный бетон, проводит тепло.