Применение соединений углерода и кремния. Общие сведения об углероде и кремнии

Описание и свойства кремния

Кремний – элемент , чётвёртая группа, третий период в таблице элементов. Атомный номер 14. Формула кремния — 3s2 3p2. Определён как элемент, в 1811 г, а в 1834 г получил русское название «кремний», взамен прежнего «сицилий». Плавится при 1414º С, закипает при 2349º С.

Молекулярным строением он напоминает , но уступает ему по твёрдости. Довольно хрупок, в нагретом состоянии (не менее 800º С) приобретает пластичность. Просвечивается инфракрасным излучением. Монокристаллический тип кремния обладает полупроводниковыми свойствами. По некоторым характеристикам атом кремния схож с атомарным строением углерода. Электроны кремния имеют такое же валентное число, как и при углеродном строении.

Рабочие свойства кремния зависят от содержания в нём определённых содержаний. У кремния допустим различный тип проводимости. В частности это «дырочный» и «электронный» тип. Для получения первого в кремний добавляется бор. Если добавить фосфор, кремний приобретает второй тип проводимости. Если кремний нагревать вместе с другими металлами, образовываются специфические соединения, называемые «силицидами», например, при реакции «магний-кремний «.

Кремний, идущий на нужды электроники, в первую очередь оценивается по характеристикам его верхних слоёв. Поэтому необходимо обращать внимание именно на их качество, оно непосредственно отражается на общих показателях. От них зависит работа произведённого прибора. Для получения наиболее приемлемых показателей верхних слоёв кремния, их обрабатывают различными химическими способами или подвергают облучению.

Соединение «сера-кремний», образует сульфид кремния, легко взаимодействующий с водой и кислородом. При реакции с кислородом, в температурных условиях выше 400º С, получается диоксид кремния. При этой же температуре становятся возможными реакции с хлором и йодом, а также с бромом, во время этого образуются летучие вещества – тетрагалогениды.

Соединить кремний и водород, путём прямого контакта, не получится, для этого существуют методы косвенного характера. При 1000º С возможна реакция с азотом, а также бором, при этом получается нитрид и борид кремния. При этой же температуре, соединив кремний с углеродом, можно произвести карбид кремния , так называемый «карборунд». Данный состав обладает твёрдой структурой, химическая активность вялая. Используется как абразив.

В соединении с железом, кремний образует особую смесь, это допускает плавление этих элементов, при котором образуется ферросилициевая керамика. Причём температура её плавления гораздо ниже, чем если их плавить по отдельности. При температурном режиме выше 1200º С, из элемента начинается образование оксида кремния , также при определённых условиях получается гидроксид кремния . При травлении кремния применяются щелочные растворы на водной основе. Их температура должна быть не менее 60º С.

Месторождения и добыча кремния

Элемент – второе по распространению на планете вещество. Кремний составляет почти треть объёма земной коры. Более распространенным является только кислород. Преимущественно выражен кремнезёмом – соединением в своей основе содержащим диоксид кремния. Главные производные диоксида кремния – кремень, различные пески, кварц, а также полевые . После них идут силикатные соединения кремния. Самородность для кремния – редкое явление.

Применение кремния

Кремний, химические свойства которого определяют область его применения, делится на несколько видов. Менее чистый кремний идёт на металлургические нужды: на , например для добавки в алюминий, кремний активно меняет его свойства, раскислители, и т.д. Он активно модифицирует свойства металлов, посредством добавки в их состав. Кремний легирует их, изменяя рабочие характеристики, кремния достаточно при этом совсем небольшого количества.

Также из неочищенного кремния производят более качественные производные, в частности, моно и поликристаллический кремний, а также кремниевые органики – это силиконы и различные органические масла. Также он нашёл своё применение при производстве цемента и стекольной промышленности. Не обошёл он и кирпичное производство, фабрики производящие фарфор и также без него не обходятся.

Кремний входит в состав всем известного силикатного клея, который идёт на ремонтные работы, а раньше он использовался в канцелярских нуждах, пока не появились более практичные заменители. В состав некоторых пиротехнических изделий также входи кремний. Из него и его железных сплавов можно получать водород на открытом воздухе.

На что идёт более качественный кремний? Пластины солнечных батарей тоже включают в состав кремний, естественно не технический. Для этих нужд необходим кремний идеальной чистоты или хотя бы технический кремний высшей степени очистки.

Так называемый «электронный кремний», который содержит кремний почти на 100%, обладает гораздо лучшими показателями. Поэтому его предпочитают при производстве сверхточных электронных приборов и сложных микросхем. При их изготовлении требуется качественная производственная схема, кремний для которой должен идти только высшей категории. Работа этих устройств зависит от того, сколько содержит кремний нежелательных примесей.

Кремний занимает важное место в природе, и большинство живых существ, постоянно испытывают в нём потребность. Для них это своеобразный строительный состав, потому — что он крайне важен для здоровья опорно-двигательного аппарата. Ежедневно человек поглощает до 1 г соединений кремния .

Может ли кремний быть вредным?

Да, по той причине что, диоксид кремния крайне расположен к пылеобразованию. Она имеет раздражающее воздействие на слизистые поверхности организма и способна активно накапливаться в лёгких, вызывая силикоз. Для этого на производстве связанного с переработкой кремниевых элементов, обязательно применение респираторов. Особенно важно их наличие, если речь идёт о моноксиде кремния.

Цена кремния

Как известно вся современная электронная техника, начиная от телекоммуникаций и заканчивая компьютерными технологиями, основывается на применении кремния, используя его полупроводниковые свойства. Его другие аналоги применяются в гораздо меньшей степени. Уникальные свойства кремния и его производных пока вне конкуренции, на долгие года вперёд. Несмотря на спад цен в 2001 г на кремний, продажи быстро пришли в норму. И уже в 2003 г товарооборот составил 24 тысячи тонн за год.

Для новейших технологий, требующих почти кристальной чистоты кремния, его технические аналоги не подходят. А за счёт его сложной системы очистки цена соответственно в разы возрастает. Более распространённым является поликристаллический тип кремния, несколько меньшим спросом пользуется его монокристаллический прототип. При этом доля использования кремния для полупроводников занимает львиную часть товарооборота.

Цены на продукцию варьируются в зависимости от чистоты и назначения кремния, купить который, можно начиная от 10 центов за кг неочищенного сырья и до 10$ и выше за «электронный» кремний.

  • Обозначение - Si (Silicon);
  • Период - III;
  • Группа - 14 (IVa);
  • Атомная масса - 28,0855;
  • Атомный номер - 14;
  • Радиус атома = 132 пм;
  • Ковалентный радиус = 111 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 2 ;
  • t плавления = 1412°C;
  • t кипения = 2355°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,90/1,74;
  • Степень окисления: +4, +2, 0, -4;
  • Плотность (н. у.) = 2,33 г/см 3 ;
  • Молярный объем = 12,1 см 3 /моль.

Соединения кремния:

В чистом виде впервые кремний был выделен в 1811 году (французы Ж. Л. Гей-Люссак и Л. Ж. Тенар). Чистый элементарный кремний был получен в 1825 г. (швед Й. Я. Берцелиус). Свое название "кремний" (в переводе с древнегреческого - гора) химический элемент получил в 1834 году (российский химик Г. И. Гесс).

Кремний является самым распространенным (после кислорода) химическим элементом на Земле (содержание в земной коре 28-29% по массе). В природе кремний чаще всего присутствует в виде кремнезема (песок, кварц, кремень, полевые шпаты), а также в силикатах и алюмосиликатах. В чистом виде кремний встречается чрезвычайно редко. Многие природные силикаты в чистом виде являются драгоценными камнями: изумруд, топаз, аквамари - это все кремний. Чистый кристаллический оксид кремния (IV) встречается в виде горного хрусталя и кварца. Оксид кремния, в котором присутствуют различные примеси, образует драгоценные и полудрагоценные камни - аметист, агат, яшма.


Рис. Строение атома кремния.

Электронная конфигурация кремния - 1s 2 2s 2 2p 6 3s 2 3p 2 (см. Электронная структура атомов). На внешнем энергетическом уровне у кремния находятся 4 электрона: 2 спаренных на 3s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома кремния в возбужденное состояние один электрон с s-подуровня "покидает" свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома кремния приобретает следующий вид: 1s 2 2s 2 2p 6 3s 1 3p 3 .


Рис. Переход атома кремния в возбужденное состояние.

Т. о., кремний в соединениях может проявлять валентность 4 (чаще всего) или 2 (см. Валентность). Кремний (так же, как и углерод), реагируя с другими элементами, образует химические связи в которых может как отдавать свои электроны, так и принимать их, но при этом способность принимать электроны у атомов кремния выражена слабее, чем у атомов углерода , по причине большего размера атома кремния.

Степени окисления кремния:

  • -4 : SiH 4 (силан), Ca 2 Si, Mg 2 Si (силикаты металлов);
  • +4 - наиболее устойчивая: SiO 2 (оксид кремния), H 2 SiO 3 (кремниевая кислота), силикаты и галогениды кремния;
  • 0 : Si (простое вещество)

Кремний, как простое вещество

Кремний представляет из себя темно-серое кристаллическое вещество с металлическим блеском. Кристаллический кремний является полупроводником.

Кремний образует только одну аллотропную модификацию, подобную алмазу, но при этом не такую прочную, т. к. связи Si-Si не так прочны, как в алмазной молекуле углерода (См. Алмаз).

Аморфный кремний - порошок бурого цвета, с температурой плавления 1420°C.

Кристаллический кремний получают из аморфного путем его перекристаллизации. В отличие от аморфного кремния, который является достаточно активным химическим веществом, кристаллический кремний более инертен в плане взаимодействия с другими веществами.

Строение кристаллической решетки кремния повторяет структуру алмаза, - каждый атом окружен четырьмя другими атомами, расположенными в вершинах тетраэдра. Атомы связываются друг с другом ковалентными связями, которые не так прочны, как углеродные связи в алмазе. По этой причине, даже при н.у. некоторые ковалентные связи в кристаллическом кремнии разрушаются, в результате чего высвобождается некоторая часть электронов, благодаря чему кремний обладает небольшой электропроводностью. По мере нагревания кремния, на свету или при добавлении некоторых примесей, кол-во разрушаемых ковалентных связей увеличивается, вследствие чего и увеличивается кол-во свободных электронов, следовательно, растет и электропроводность кремния.

Химические свойства кремния

Как и углерод, кремний может быть и восстановителем, и окислителем, в зависимости от того, с каким веществом вступает в реакцию.

При н.у. кремний взаимодействует только с фтором, что объясняется достаточно прочной кристаллической решеткой кремния.

В реакцию с хлором и бромом кремний вступает при температурах, превышающих 400°C.

С углеродом и азотом кремний взаимодействует только при очень высоких температурах.

  • В реакциях с неметаллами кремний выступает в роли восстановителя :
    • при нормальных условиях из неметаллов кремний реагирует только с фтором, образуя галогенид кремния:
      Si + 2F 2 = SiF 4
    • при высоких температурах кремний реагирует с хлором (400°C), кислородом (600°C), азотом (1000°C), углеродом (2000°C):
      • Si + 2Cl 2 = SiCl 4 - галогенид кремния;
      • Si + O 2 = SiO 2 - оксид кремния;
      • 3Si + 2N 2 = Si 3 N 4 - нитрид кремния;
      • Si + C = SiC - карборунд (карбид кремния)
  • В реакциях с металлами кремний является окислителем (образуются салициды :
    Si + 2Mg = Mg 2 Si
  • В реакциях с концентрированными р-рами щелочей кремний реагирует с выделением водорода, образуя растворимые соли кремниевой кислоты, называемые силикатами :
    Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2
  • С кислотами (за исключением HF) кремний не реагирует.

Получение и применение кремния

Получение кремния:

  • в лаборатории - из кремнезема (алюмотерапия):
    3SiO 2 + 4Al = 3Si + 2Al 2 O 3
  • в промышленности - восстановлением оксида кремния коксом (технически чистый кремний) при высокой температуре:
    SiO 2 + 2C = Si + 2CO
  • самый чистый кремний получают восстановлением тетрахлорида кремния водородом (цинком) при высокой температуре:
    SiCl 4 +2H 2 = Si+4HCl

Применение кремния:

  • изготовление полупроводниковых радиоэлементов;
  • в качестве металлургических добавок при производстве жаропрочных и кислотоустойчивых соединений;
  • в производстве фотоэлементов для солнечных батарей;
  • в качестве выпрямителей переменного тока.

Краткая сравнительная характеристика элементов углерода и кремния представлена в таблице 6.

Таблица 6

Сравнительная характеристика углерода и кремния

Критерии сравнения Углерод – С Кремний – Si
положение в периодической системе химических элементов , 2-ой период, IV группа, главная подгруппа , 3-ий период, IV группа, главная подгруппа
электронная конфигурация атомов
валентные возможности II – в стационарном состоянии IV – в возбужденном состоянии
возможные степени окисления , , , , , ,
высший оксид , кислотный , кислотный
высший гидроксид – слабая нестойкая кислота () или – слабая кислота, имеет полимерную структуру
водородное соединение – метан (углеводород) – силан, неустойчив

Углерод . Для углерода-элемента характерна аллотропия. Углерод существует в форме следующих простых веществ: алмаз, графит, карбин, фуллерен, из которых термодинамически устойчивым является только графит. Уголь и сажу можно рассматривать как аморфные разновидности графита.

Графит тугоплавок, мало летуч, при обычной температуре химически инертен, представляет собой непрозрачное, мягкое вещество, слабо проводящее ток. Структура графита слоистая.

Аламаз – чрезвычайно твердое, химически инертное (до 900 °С) вещество, не проводит тока и плохо проводит тепло. Структура алмаза тетраэдрическая (каждый атом в тетраэдре окружен четырьмя атомами и т.д.). Поэтому алмаз – простейший полимер, макромолекула которого состоит из одних атомов углерода.

Карбин имеет линейную структуру ( –карбин, полиин) или ( – карбин, полиен). Представляет собой черный порошок, обладает полупроводниковыми свойствами. Под действием света электропроводность карбина увеличивается, а при температуре карбин превращается в графит. Химически более активен, чем графит. Синтезирован в начале 60-х годов XX в., позже был обнаружен в некоторых метеоритах.

Фуллерен – аллотропная модификация углерода, образованная молекулами , имеющими конструкцию типа “футбольный мяч”. Были синтезированы молекулы , и другие фуллерены. Все фуллерены представляют собой замкнутые структуры из атомов углерода в гибридном состоянии. Негибридизованные электроны связей делокализованы как в ароматических соединениях. Кристаллы фуллерена относятся к молекулярному типу.



Кремний . Для кремния не характерно связей, не характерно существование в гибридном состоянии. Поэтому существует только одна устойчивая аллотропная модификация кремния, кристаллическая решетка которой подобна решетке алмаза. Кремний – твердое (по шкале Мооса твердость равна 7), тугоплавкое (), очень хрупкое вещество темно-серого цвета с металлическим блеском при стандартных условиях – полупроводник. Химическая активность зависит от размеров кристаллов (крупнокристаллический менее активен, чем аморфный).

Реакционная способность углерода зависит от аллотропной модификации. Углерод в виде алмаза и графита довольно инертен, устойчив к действию кислот, щелочей, что позволяет изготавливать из графита тигли, электроды и т.д. Более высокую реакционную способность углерод проявляет в виде угля и сажи.

Кристаллический кремний достаточно инертен, в аморфной форме – более активен.

Основные виды реакций, отражающих химические свойства углерода и кремния, приведены в таблице 7.


Таблица 7

Основные химические свойства углерода и кремния

реакция с углерод реакция с кремний
простыми веществами кислородом кислородом
галогенами галогенами
серой углеродом
водородом водородом не реагирует
металлами металлами
сложными веществами оксидами металлов щелочами
водяным паром кислотами не реагирует
кислотами

Вяжущие материалы

Вяжущие материалы минеральные или органические строительные материалы, применяемые для изготовления бетонов, скрепления отдельных элементов строительных конструкций, гидроизоляции и др .

Минеральные вяжущие материалы (МВМ)– тонкоизмельченные порошкообразные материалы (цементы, гипс, известь и др.), образущие при смешивании с водой (в отдельных случаях – с растворами солей, кислот, щелочей) пластичную удобоукладываемую массу, затвердевающую в прочное камневидное тело и связывающую частицы твердых заполнителей и арматуру в монолитное целое.

Твердение МВМ осуществляется вследствие процессов растворения, образования пересыщенного раствора и коллоидной массы; последняя частично или полностью кристаллизуется.

Классификация МВМ:

1. гидравлические вяжущие материалы:

При смешивании с водой (затворении) твердеют и продолжают сохранять или наращивать свою прочность в воде. К ним относятся различные цементы и гидравлическая известь. При твердении гидравлической извести происходит взаимодействие СаО с водой и углекислым газом воздуха и кристаллизация образующегося продукта. Применяют в строительстве наземных, подземных и гидротехнических сооружений, подвергающихся постоянному воздействию воды.

2. воздушные вяжущие материалы:

При смешивании с водой твердеют и сохраняют прочность только на воздухе. К ним относятся воздушная известь, гипсово-ангидритные и магнезиальные воздушные вяжущие.

3. кислотоупорные вяжущие материалы:

Состоят в основном из кислотоупорного цемента, содержащего тонкоизмельченную смесь кварцевого песка и ; их затворяют, как правило, водными растворами силиката натрия или калия, они длительно сохраняют свою прочность при воздействии кислот. При твердении осуществляется реакция . Применяют для производства кислотоупорных замазок, строительных растворов и бетонов при строительстве химических предприятий.

4. вяжущие материалы автоклавного твердения:

Состоят из известково-кремнеземистых и известково-нефелиновых вяжущих (известь, кварцевый песок, нефелиновый шлам) и твердеют при обработке в автоклаве (6-10 ч, давление пара 0,9-1,3 МПа). К ним относят также песчанистые портландцементы и другие вяжущие на основе извести, зол и малоактивных шламов. Применяют в производстве изделий из силикатных бетонов (блоки, силикатный кирпич и др.).

5. фосфатные вяжущие материалы:

Состоят из специальных цементов; их затворяют фосфорной кислотой с образованием пластичной массы, постепенно затвердевающей в монолитное тело, и сохраняющей свою прочность при температурах выше 1000 °С. Обычно используют титанофосфатный, цинкофосфатный, алюмофосфатный и др. цементы. Применяют для изготовления огнеупорной футеровочной массы и герметиков для высокотемпературной защиты металлических деталей и конструкций в производстве огнеупорных бетонов и др.

Органические вяжущие материалы (ОВМ)– вещества органического происхождения, способные переходить из пластичного состояния в твердое или малопластичное в результате полимеризации или поликонденсации.

По сравнению с МВМ они менее хрупки, имеют большую прочность при растяжении. К ним относятся продукты, образующиеся при переработке нефти (асфальт, битум), продукты термического разложения древесины (деготь), а также синтетические термореактивные полиэфирные, эпоксидные, феноло-формальдегидные смолы. Применяют в строительстве дорог, мостов, полов производственных помещений, рулонных кровельных материалов, асфальтополимерныбетонов и др.

В бинарных соединениях кремния с углеродом каждый атом кремния непосредственно связан с четырьмя соседними атомами углерода, располагающимися в вершинах тетраэдра, центром ко­торого и является атом кремния. В то же время каждый атом углерода в свою очередь связан с четырьмя соседними атомами кремния, размещенными в вершинах тетраэдра, центром которо­го является атом углелода. Такое взаимное расположение атомов кремния и углерода основано на кремний-углеродной связи Si - C- и образует плотную и весьма прочную кристаллическую структуру.

В настоящее время известно только два бинарных соединения кремния с углеродом. Это очень редко встречающийся в природе минерал муассанит, пока не имеющий практического применения, и искусственно получаемый карборунд SiC, который иногда назы­вается силундом, рефраксом, карбофраксом, кристоланом и т. д.

В лабораторной практике и в технике карборунд получают восстановлением кремнезема углеродом по уравнению реакция

SiO 2 + 3C =2СО + SiC

В состав шихты для получения карборунда вводят кроме тонкоизмельчениых кварца или чистого кварцевого леска и кокса в качестве добавок поваренную соль и древесные опилки. Опилки во время обжига рыхлят шихту, а поваренная соль, реагируя с железистыми и алюминиевыми примесями, превращает их в ле: тучие хлориды FеС1 3 и А1С1 3 , удаляющиеся из зоны реакции при 1000-1200° С. Фактически реакция между кремнеземом и коксом начинается уже при 1150° С, но протекает чрезвычайно медленно. С повышением температуры до 1220° С скорость ее возрастает. В температурном интервале от 1220 до 1340° С она становится экзотермической и протекает бурно. В результате реакции снача­ла образуется смесь, состоящая из мельчайших кристаллов и из аморфной разновидности карборунда. С повышением температу­ры до 1800-2000° С смесь перекристаллизовывается и превраща­ется в хорошо развитые, таблитчатой формы, редко бесцветные, чаще окрашенные в зеленый, серый и даже черный цвет с алмазным блеском и радужной игрой шестигранные кристаллы, содержащие около 98-99,5% карборунда. Процесс получения карборунда из шихты ведут в электропечах гари 2000-2200° С. Чтобы получить химически чистый карборунд, продукт, полученный в результате обжига шихты, обрабатывают щелочью, растворяющей не вошедший в реакцию кремнезем.

Кристаллический карборунд относится к весьма твердым веществам; твердость его 9. Омическое сопротивление поликристаллического карборунда с повышением температуры уменьшается и при 1500 0 С становится незначительным.



Hа воздухе при температуре свыше 1000 0 С карборунд начинает окисляться сначала медленно, а затем с повышением температуры свыше 1700° С энергично. При этом образуются кремнезем и оксид углерода:

2SiC + ЗО 2 = 2SiO 2 + 2CO

Образующийся на поверхности карборунда диоксид кремния представляет собой защитную пленку, несколько замедляющую даль­нейшее окисление карборунда. В среде водяного пара окисление карборунда при тех же условиях протекает более энергично.

Минеральные кислоты, за исключением ортофосфорной, на карборунд не действуют, хлор при 100° С разлагает его по уравнению реакции

SiC + 2Cl 2 = SiCl 4 + C

а при 1000° С вместо углерода выделяется СС1 4:

SiC + 4C1 2 =SiCl + CC1 4

Расплавленные металлы, реагируя с карборундом, образуют соответствующие силициды:

SiC + Fe =FeSl + С

При температурах выше 810° С карборунд восстанавливает до металла оксиды щелочноземельных металлов, свыше 1000° С он восстанавливает оксид железа (III) Fe 2 O 3 и свыше 1300-1370° С оксид железа (II) FeO, оксид никеля (II) NiO и оксид марган­ца МnО.

Расплавленные едкие щелочи и их карбонаты в присутствии кислорода воздуха полностью разлагают карборунд с образова­нием соответствующих силикатов:

SiC + 2КОН + 2О 2 = K 2 SiO 3 + Н 2 О + СО 2

SiC + Na 2 CO 3 + 2O 2 = Na 2 SiO 3 + 2СО 2

Карборунд способен также реагировать с пероксидом натрия, оксидом свинца (II) и ортофосфорной кислотой.

Благодаря тому, что карборунд обладает высокой твердостью, его широко используют в качестве абразивных порошков для шлифовки металла, а также и для изготовления из него карборундовых абразивных кругов, брусков и шлифо­вальной бумаги. Электрическая проводимость карборунда при высоких температурах дает возможность использовать его как основной материал при изготовлении так называемых силитовых стержней, представляющих собой элементы сопротивления в электропечах. Для этой цели смесь карборунда с кремнием за­творяют глицерином или другим органическим цементирующим -веществом и из полученной массы формуют стержни, которые обжигают при 1400-1500° С в атмосфере оксида углерода или в атмосфере азота. Вo время обжига цементирующее органическое вещество разлагается, выделяющийся углерод, соединяясь с кремнием, превращает его в карборунд и придает стержням требуемую прочность.



Из карборунда изготовляют специальные огнеупорные тигли
для плавки металлов, которые получают горячим прессованием
карборунда при 2500° С под давлением 42-70 МПа. Еще извест­
ны огнеупоры, изготовленные из смесей карборунда с нитридами
бора, стеатитом, молибденсодержащими.связками и другими ве­
ществами.

ГИДРИДЫ КРЕМНИЯ, ИЛИ СИЛАНЫ

Водородные соединения кремния принято называть гидридами кремния, или силанами. Подобно насыщенным углеводородам гидриды кремния образуют гомологический ряд, в котором атомы кремния соединены между собой одинарной связью

Si-Si -Si -Si -Si- и т. д.

Простейшим.представителем

этого гомологического ряда является моносилан, или просто силан, SiH 4 , строение молекулы которого подобно строению метана, затем следует

дисилан H 3 Si-SiH 3 , который по строению молекулы подобен этану, затем трисилан H 3 Si-SiH 2 -SiH 3 ,

тетрасилан H 3 Si-SiH 2 -SiH 2 -SiH 3 ,

пентасилан H 3 Si-SiH 2 -SiH 2 -SiH 2 ^--SiH 3 и последний из полученных силанов этого гомологического ряда

гексасилан Н 3 Si-SiH 2 -SiH 2 -SiH 2 -SiH 2 -SiH 3 . Силаны в чистом виде в природе не встречаются. Получают их искусственным способом:

1. Разложением силицидов металлов кислотами или щелоча­ми по уравнению реакции

Mg 2 Si+ 4HCI = 2MgCl 2 + SiH 4

при этом образуется смесь силанов, которую затем разделяют дробной перегонкой при весьма низких температурах.

2. Восстановлением галогеносиланов гидридом лития или алюмогидридом лития:

SiCl 4 + 4 LiH = 4LiCl + SiH 4

Этот способ получения силалов впервые описан в 1947 г.

3. Восстановлением галогеносиланов водородом. Реакция протекает при 300 - 400° С в реакционных трубках, наполненных контактной смесью, содержащей, кремний, металлическую медь и в качестве катализаторов 1 - 2% галогенидов алюминия.

Несмотря на сходство в молекулярном строении ситанов и пре­дельных углеводородов, физические свойства их различны.

По сравнению с углеводородами силаны менее устойчивы. Наиболее устойчивым из них является моносилан SiH4, разлагаю­щийся на кремний и водород только при красном калении. Другие силаны с большим содержанием кремния при значительно более низких температурах образуют низшие производные. Напри­мер, дисилан Si 2 H 6 дает при 300° С силан и твердый полимер, а гексасилан Si 6 H 14 разлагается медленно даже при нормальных температурах. При соприкосновении с кислородом силаны легко окисляются, а некоторые из них, например моносилан SiH 4 , само­воспламеняются при -180° С. Силаны легко гидролизуются на диоксид кремния и водород:

SiH 4 + 2H 2 0 = SiO 2 + 4H 2

У высших силанов этот процесс совершается с расщеплением

связи - Si - Si - Si - между атомами кремния. Например, три-

силан Si 3 H 8 дает три молекулы SiO 2 и десять молекул газообразного водорода:

H 3 Si - SiH 2 - SiH 3 + 6Н 3 О = 3SiO 2 + 10Н 2

В присутствии едких щелочей в результате гидролиза силанов образуется силикат соответствующего щелочного металла и водород:

SiH 4 + 2NaOH + H 2 0 = Na 2 Si0 3 + 4H 2

ГАЛОГЕНИДЫ КРЕМНИЯ

К бинарным соединениям кремния относятся также и галогеносиланы. Подобно гидридам кремния - силанам - они образуют гомологический ряд химических соединений, в которых атомы галогенида непосредственно соединены с атомами кремния, связанными между собой одинарными связями

и т. д. в цепочки соответствующей длины. Благодаря такому сход­ству галогеносиланы можно рассматривать как продукты заме­щения водорода в силанах на соответствующий галоген. При этом замещение может быть полным и неполным. В последнем случае получаются галогенопроизводные силанов. Наивысшим, известным до настоящего времени галогеносилаиом считается хлорсилан Si 25 Cl 52. Галогеносиланы и их галогенопроизводные в природе в чистом виде не встречаются и могут быть получены исключительно искусственным путем.

1. Непосредственным соединением элементарного кремния с галогенами. Например, SiCl 4 получают из ферросилиция, содер­жащего от 35 до 50% кремния, обрабатывая его при 350-500° С сухим хлором. При этом в качестве основного продукта получают SiCl 4 в смеси с другими более сложными галогеносиланами Si 2 С1 6 , Si 3 Cl 8 и т. д. по уравнению реакции

Si + 2Cl 2 = SiCl 4

Это же соединение может быть получено хлорированием смеси кремнезема с коксом при высоких температурах. Реакция проте­кает по схеме

SiO 2 + 2C=Si +2CO

Si + 2C1 2 =SiС1 4

SiO 2 + 2C + 2Cl 2 = 2CO + SiCl 4

Тетрабромсилан получают бромированием при красном кале­нии элементарного кремния парами брома:

Si + 2Вг 2 = SiBr 4

или смеси кремнезема с коксом:

SiO 2 + 2C = Si+2CO

Si + 2Br 3 = SiBi 4

SiO 2 + 2С + 2Br 2 = 2CO + SiBr 4

При этом одновременно с тетрасиланами возможно образова­ние силанов высших степеней. Например, при хлорировании сили­цида магния получают 80% SiCI 4 , 20% SiCl 6 и 0,5-1% Si 3 Cl 8 ; при хлорировании силицида кальция состав продуктов реакции выражается в таком виде: 65% SiС1 4 ; 30% Si 2 Cl 6 ; 4% Si 3 Cl 8 .

2. Галогенирование силанов галогецоводородами в присут­ствии катализаторов А1Вг 3 при температурах свыше 100° С. Реак­ция протекает по схеме

SiH 4 + НВг = SiH 3 Br + Н 2

SiН 4 + 2НВг = SiH 2 Br 2 + 2H 2

3. Галогенирование силанов хлороформом в присутствии катализаторов АlСl 3:

Si 3 H 8 + 4СНС1 3 = Si 3 H 4 Cl 4 + 4СН 2 С1 3

Si 3 H 8 + 5СНСl 3 = Si 3 Н 3 С1 5 + 5СН 2 С1 2

4. Тетрафторид кремния получают действием на кремнезем плавиковой кислотой:

SiO 2 + 4HF= SiF 4 + 2H 2 0

5. Некоторые полигалогеносиланы могут быть получены из простейших галогеносиланов галогенировалием их соответствую­щим галогенидом. Например, тетраиодсилан в запаянной трубке при 200-300° С, реагируя с серебром, выделяет гексаиоддисилан по

Иодсиланы могут быть получены при взаимодействии иода с силанами в среде четыреххлористого углерода или хлороформа, а также в присутствии катализатора AlI 3 при взаимодействии силана с йодистым водородом

Галогеносиланы менее прочны, чем подобные им по строению галогенопроизводные углеводородов. Они легко гидролизуются, образуя силикагель и галогеноводородную кислоту:

SiCl 4 + 2H 2 O = Si0 2 + 4HCl

Простейшими представителями галогеносиланов являются SiF 4 ,SiCl 4 , SiBr 4 и SiI 4 . Из них в технике в основном используются тетрафторсилан и тётрахлорсилан. Тетрафторсилан SiF 4 -бесцветный газ с острым запахом, на воздухе дымит, гидролизуется на кремнефтористрводородную кислоту и силикагель. Получают SiF 4 действием фтористоводородной кислоты на кремнезем по уравнению реакции

SiО 2 + 4HF = SlF 4 + 2H 2 0

Для промышленного получения. SiF 4 используют плавиковый шпат CaF 2 , кремнезем SiO 2 и серную кислоту H 2 SO 4 . Реакция протекает в две фазы:

2CaF 2 + 2H 3 SO 4 = 2СаSО 4 + 4HF

SiO 2 + 4HF = 2H 2 O + SiF 4

2CaF 2 + 2H 2 S0 4 + SiO 2 = 2CaSO 4 + 2H 2 O + SiF 4

Газообразное состояние и летучесть тетрафторсилана исполь­зуется для травления известковонатриевых силикатных стекол фтористым водородом. При взаимодействии фтористого водоро­да со стеклом образуется тетрафторсилан, фторид кальция, фто-_ рид натрия и вода. Тетрафторсилан, улетучиваясь, освобождает новые более глубокие слои стекла для реакции с фтористым во­дородом. На месте реакции остаются CaF 2 и NaF, которые раст­воряются в воде и тем самым освобождают доступ фтористому водороду для дальнейшего проникновения к свежеоголенной по­верхности стекла. Протравленная поверхность может быть матовой или прозрачной. Матовое травление получается при действий на стекло газообразного фтористого водорода, прозрачное - при травлении водными растворами плавиковой кислоты. Если пропускать тетрафторсилан в воду, получаются H 2 SiF 6 и кремнезем в виде геля:

3SiF 4 + 2Н 2 О = 2H 2 SiF 6 + Si0 2

Кремнефтористоводородная кислота относится к числу сильных двухосновных кислот, в свободном состоянии не получена, при выпаривании разлагается на SiF 4 и 2HF, которые улетучиваются; с едкими щелочами образует кислые и нормальные соли:

H 2 SlF 6 + 2NaOH.= Na 2 SiF 6 + 2H 2 O

с избытком щелочей дает фторид щелочного металла, кремнезем и воду:

H 2 SiF 6 + 6NaOH = 6NaF+SiO 2 + 4H 2 O

Выделяющийся в этой реакции кремнезем реагирует с едкой ще-
лочью и приводит к образованию силиката:

SiO 2 + 2NaOH = Na 2 SiO 3 +H 2 O

Соли кремнефтористоводородной кислоты называются силикофторидами или флюатами. В настоящее время известны кремнефто-риды Na, H, Rb, Cs, NH 4 , Cu, Ag, Hg, Mg, Ca, Sr, Ba, Cd, Zn, Mn, Ni, Co, Al, Fe, Cr, Pb и т. д.

В технике для различных целей используются кремнефториды натрия Na 2 SiF 6 , магния MgSiF 6 *6HgO, цинка ZnSiF 6 * 6H 2 O, алю­миния Al 2 (SiF 6) 3 , свинца PbSiF 6 , бария BaSiF 6 и др. Кремнефто­риды обладают антисептическими и уплотняющими свойствами; в то же время они являются антипиренами. Благодаря этому их используют для пропитки древесины, чтобы предотвратить преждевременное загнивание ее и уберечь от воспламенения при пожа­рах. Кремнефторидами пропитывают также искусственные и естественные камни строительного назначения для уплотнения их. Сущность пропитки заключается в том, что раствор кремнефторидов, проникая в поры и трещины камня, реагирует с карбона­том кальция и некоторыми другими соединениями и образует нерастворимые соли, отлагающиеся в порах и уплотняющие их. Это значительно повышает сопротивляемость камня выветриванию. Материалы, которые совсем не содержат карбоната кальция или содержат его мало, предварительно обрабатываются аванфлюатами, т.е. веществами, содержащими в растворенном виде соли кальция, силикаты щелочных металлов и другие вещества, способные образовывать с флюатами нерастворимые осадки. В качестве флюатов используются кремнефториды магния, цинка и алюминия. Процесс флюатирования может быть представлен в таком виде:

MgSiF 6 + 2СаСО 3 = MgF 2 + 2CaF 2 + SiO 2 + 2СО 2

ZnSiF 6 + ЗСаС0 3 = 3CaF 6 + ZnCO 3 + SiO 2 + 2CO 2

Al 2 (SiF 6) 3 + 6CaCO 3 =. 2A1F 3 + 6CaF 2 + 3SiO 2 + 6CO 2

Кремнефториды щелочных металлов получаются при взаимодействии кремнефтористоводородной кислоты с растворами солей этих металлов:

2NaCl + H 2 SiF 6 = Na 2 SlF 6 + 2НС1

Это студенистые осадки, растворимые в воде и практически нерастворимые в абсолютном спирте. Поэтому их используют в количественном анализе при определении кремнезема объем­ным методом. Для технических целей используется кремнефторид натрия, получающийся в виде белого порошка в качестве побочного продукта в производстве суперфосфата. Из смеси Na 2 SiF 6 и А1 2 О 3 при 800° С образуется криолит 3NaF٠AlF 3 ,который широко применяется в производстве зубных цементов и является хо­рошим глушителем как в стекольном деле, так и при изготовле­нии непрозрачных глазурей и эмалей.

Кремнефторид натрия как один из компонентов вводится в со- став химически стойких замазок, изготовляемых на жидком стекле:

Na 2 SiF 6 + 2Na 2 SiO 3 = 6NaF + 3SiO 2

Выделяющийся по этой реакции кремнезем придает затвердевшей замазке химическую устойчивость. В то же время Na 2 SiF 6 явля­ется ускорителем твердения. Кремнефторид натрия вводится так­же в качестве минерализатора в сырьевые смеси при производ­стве цементов.

Тетрахлорсилан SiCl 4 -бесцветная, дымящая.на воздухе, лег­ко гидролизующаяся жидкость, получающаяся хлорированием карборунда или ферросилиция действием на силаны при повы­шенных температурах

Тетрахлорсилан - основной исходный продукт для получения многих кремнийорганических соединений.

Тетрабромсилан SiBr 4 - бесцветная, дымящая на воздухе, лег­ко гидролизующаяся на SiО 2 и НВг жидкость, получающаяся при температуре красного каления, при пропускании над раскален­ным элементарным кремнием паров брома.

Тетраиодсилан SiI 4 - белое кристаллическое вещество, полу­чающееся при пропускании смеси паров иода с диоксидом угле­рода над раскаленным элементарным кремнием.

Бориды и нитриды кремния

Боридами кремния называют соединения кремния с бором. В настоящее время известно два борнда кремния: триборид крем­ния B 3 Si и гексаборид кремния B 6 Si. Это чрезвычайно твердые, химически стойкие и огнеупорные вещества. Получают их сплав­лением в электрическом токе тонкоизмельченной смеси, состоя­щей из 5 вес. ч. элементарного кремния и 1 вес. ч. бора. Сцекшуюся массу очищают расплавленным карбонатом калия. Г. М. Сам­сонов и В. П. Латышев получили триборид кремния горячим прессованием при 1600-1800 0 С.

Триборид кремния с пл. 2,52 г/см 3 образует черные пластин­-
чатого строения ромбические кристаллы, просвечивающиеся
в тонком слое в желто-бурых тонах. Гексаборид кремния с пл.
2,47 г/см 3 получается в виде непрозрачных опаковых зерен непра­-
вильной формы.

Бориды кремния плавятся около 2000° С, но окисляются весь­ма медленно даже при высоких температурах. Это дает возмож­ность использовать их в качестве специальных огнеупоров. Твер­дость боридов кремния весьма высока, и в этом отношении они приближаются к карборунду.

Соединения кремния с азотом называются нитридами кремния. Известны следующие нитриды: Si 3 N 4 , Si 2 N 3 и SIN. Нитриды крем­ния получаются при прокаливании элементарного кремния в ат­мосфере чистого азота в температурном интервале от 1300 до 1500° С. Нормальный нитрид кремния Si 3 N 4 может быть получен из смеси кремнезема с коксом, прокаливаемой в атмосфере чисто­го азота при 1400-1500° С:

6С + 3Si0 2 + 2N 3 ͢ Si 3 N 4 + 6CO

Si 3 N 4 - серовато-белый огнеупорный и кислотостойкий поро­шок, улетучивающийся лишь свыше 1900° С. Нитрид кремния гидролизуется с выделением кремнезема и аммиака:

Si 3 N 4 + 6H 2 O = 3SiO 2 + 4NH 3

Концентрированная серная кислота при нагревании медленно разлагает Si 3 N 4 , а разбавленная кремнефтористоводородная раз­лагает его более энергично.

Нитрид кремния состава Si 2 N 3 получается тоже действием азота при высоких температурах на элементарный кремний или на карбоазоткремний C 2 Si 2 N + N 2 =2C + Si2N 3 .

Кроме бинарных соединений кремния с азотом в настоящее время известно много других более сложных, в основе которых лежит непосредственная связь атомов кремния с атомами азота, например: 1) аминосиланы SiH 3 NH 2 , SiH 2 (NH 2) 2 , SiH(NH 2 } 3, Si(NH 2) 4 ; 2) силиламины NH 2 (SiH 3), NH(SiH 3) 2 , N(SiH 3) 3 ; 3) азотсодержащие соединения кремния более сложного состава.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ

Введение

2.1.1 Степень окисления +2

2.1.2 Степень окисления +4

2.3 Карбиды металлов

Глава 3. Соединения кремния

Список литературы

Введение

Химия - одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

По определению Д.И. Менделеева (1871), "химию в современном ее состоянии можно... назвать учением об элементах".

Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемиа (греческое Chemia, встречается у Плутарха), которое производится от "хем" или "хаmе" - черный и означает "наука черной земли" (Египта), "египетская наука" .

Современная химия тесно связана, как с другими естественными науками, так и со всеми отраслями народного хозяйства.

Качественная особенность химической формы движения материи, и ее переходов в другие формы движения обуславливает разносторонность химической науки и ее связи с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химиейи химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии, и сама испытывала и испытывает её влияние.

Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества).

До конца 18 века термины "неорганическая химия" и "органическая химия" указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т.е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ. Через органическую и биоорганическую химию химия граничит с биохимией и далее с биологией, т.е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.

Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством её отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Как уже было сказано выше, химия рассматривает химические элементы и образуемые ими вещества, а также законы, которым подчиняются эти превращения. Один из этих аспектов (а именно, химические соединения на основе кремния и углерода) и будет рассмотрен мной в данной работе.

Глава 1. Кремний и углерод - химические элементы

1.1 Общие сведения об углероде и кремнии

Углерод (С) и кремний (Si) входят в группу IVA.

Углерод не принадлежит к числу очень распространенных элементов. Несмотря на это, значение его огромно. Углерод-основа жизни на земле. Он входит в состав весьма распространенных в природе карбонатов (Са, Zn, Mg, Fe и др.), в атмосфере существует в виде СО 2 , встречается в виде природных углей (аморфного графита), нефти и природного газа, а также простых веществ (алмаза, графита).

Кремний по распространенности в земной коре занимает второе место (после кислорода). Если углерод - основа жизни, то кремний-основа земной коры. Он встречается в громадном многообразии силикатов (рис 4) и алюмосиликатов, песка.

Аморфный кремний - порошок бурого цвета. Последний легко получить в кристаллическом состоянии в виде серых твердых, но довольно хрупких крис таллов. Кристаллический кремний - полупроводник.

Таблица 1. Общие химические данные об углероде и кремнии.

Устойчивая при обычной температуре модификация углерода - графит - представляет собой непрозрачную, серую жирную массу. Алмаз - самое твердое вещество на земле - бесцветен и прозрачен. Кристаллические структуры графита и алмаза приведены на рис.1.

Рисунок 1. Структура алмаза (а); структура графита (б)

Углерод и кремний имеют свои определенные производные.

Таблица 2. Наиболее характерные производные углерода и кремния

1.2 Получение, химические свойства и применение простых веществ

Кремний получают восстановлением оксидов углеродом; для получения в особо чистом состояний после восстановления вещество переводят в тетрахлорид и снова восстанавливают (водородом). Затем сплавляют в слитки и подвергают очистке методом зонной плавки. Слиток металла нагревают с одного конца так, чтобы в нем образовалась зона расплавленного металла. При перемещении зоны к другому концу слитка примесь, растворяясь в расплавленном металле лучше, чем в твердом, выводится, и тем самым металл очищается.

Углерод инертен, но при очень высокой, температуре (в аморфном состоянии) взаимодействует с большинством металлов с образованием твердых растворов или карбидов (СаС 2 , Fе 3 С и т.д.), а также со многими металлоидами, например:

2С+ Са = СaC 2, С + 3Fe = Fe 3 C,

Кремний более реакционно способен. С фтором он реагирует уже при обычной температуре: Si+2F 2 =SiF 4

У кремния очень большое сродство также и к кислороду:

Реакция с хлором и серой протекает около 500 К. При очень высокой температуре кремний взаимодействует с азотом и углеродом:

С водородом кремний непосредственно не взаимодействует. Кремний растворяется в щелочах:

Si+2NaOH+H 2 0=Na 2 Si0 3 +2H 2 .

Кислоты, кроме плавиковой, на него не действуют. С HF идет реакция

Si+6HF=H 2 +2H 2 .

Углерод в составе различных углей, нефти, природных (в основном СН4), а также искусственно полученных газов - важнейшая топливная база нашей планеты

Графит широко используется для изготовления тиглей. Стержни из графита применяются как электроды. Много графита идет на производство карандашей. Углерод и кремний применяются для производства различных сортов чугуна. В металлургии углерод используется как восстановитель, а кремний из-за большого сродства к кислороду-как раскислитель. Кристаллический кремний в особо чистом состоянии (не более 10 -9 ат.% примеси) используется как полупроводник в различных устройствах и приборах, в том числе в качестве транзисторов и термисторов (приборов для очень тонких измерений температур), а также в фотоэлементах, работа которых основана на способности полупроводника при освещении проводить ток.

Глава 2. Химические соединения углерода

Для углерода характерны прочные ковалентные связи между собственными атомами (С-С) и с атомом водорода (С-Н), что нашло отражение в обилии органических соединений (несколько сот миллионов). Кроме прочных связей С-Н, С-С в различных классах органических и неорганических соединений, широко представлены связи углерода с азотом, серой, кислородом, галогенами, металлами (см. табл.5). Столь высокие возможности образования связей обусловлены малыми размерами атома углерода, позволяющими его валентным орбиталям 2s 2 , 2p 2 максимально перекрываться. Важнейшие неорганические соединения описаны в таблице 3.

Среди неорганических соединений углерода уникальными по составу и строению являются азотсодержащие производные.

В неорганической химии широко представлены производные уксусной СНзСООН и щавелевой H 2 C 2 О 4 кислот - ацетаты (типа М"СНзСОО) и оксалаты (типа M I 2 C 2 О 4).

Таблица 3. Важнейшие неорганические соединения углерода.

2.1 Кислородные производные углерода

2.1.1 Степень окисления +2

Оксид углерода СО (угарный газ): по строению молекулярных орбиталей (табл.4).

СО аналогичен молекуле N 2 . Подобно азоту СО обладает высокой энергией диссоциации (1069 кДж/ моль), имеет низкую Т пл (69 К) и Т кип (81,5 К), плохо растворим в воде, инертен в химическом отношении. В реакции СО вступает лишь при высоких температурах, в том числе:

СО+Сl 2 =СОСl 2 (фосген),

СО+Вг 2 =СОВг 2, Сг+6СО=Сг (СО) 6 -карбонил хрома,

Ni+4CO=Ni (CO) 4 - карбонил никеля

СО+Н 2 0 пар =НСООН (муравьиная кислота).

Вместе с тем молекула СО имеет большое сродство к кислороду:

СО +1/202 =С0 2 +282 кДж/моль.

Из-за большого сродства к кислороду оксид углерода (II) используется как восстановитель оксидов многих тяжелых металлов (Fe, Co, Pb и др.). В лаборатории оксид СО получают обезвоживанием муравьиной кислоты

В технике оксид углерода (II) получают восстановлением С0 2 углем (С+С0 2 =2СО) или окислением метана (2СН 4 +ЗО 2 = =4Н 2 0+2СО).

Среди производных СО представляют большой теоретический и определенный практический интерес карбонилы металлов (для получения чистых металлов).

Химические связи в карбонилах образуются в основном по донорно-акцепторному механизму за счет свободных орбиталей d- элемента и электронной пары молекулы СО, имеет место также л-перекрывание по дативному механизму (металл СО). Все карбонилы металлов - диамагнитные вещества, характеризующиеся невысокой прочностью. Как и оксид углерода (II), карбонилы металлов токсичны.

Таблица 4. Распределение электронов по орбиталям молекулы СО

2.1.2 Степень окисления +4

Диоксид углерода С0 2 (углекислый газ). Молекула С0 2 линейна. Энергетическая схема образования орбиталей молекулы С0 2 приведена на рис.2. Оксид углерода (IV) может взаимодействовать с аммиаком по реакции.

При нагревании этой соли получают ценное удобрение - карбамид СО (МН 2) 2:

Мочевина разлагается водой

CO (NH 2) 2 +2HaO= (МН 4) 2СОз.

Рисунок 2. Энфгетическая диаграмма образования молекулярных орбиталей С0 2.

В технике оксид СО 2 получают разложением карбоната кальция или гидрокарбоната натрия:

В лабораторных условиях его обычно получают по реакции (в аппарате Киппа)

СаСОз+2НС1=СаС12+С02+Н20.

Важнейшими производными С0 2 являются слабая угольная кислота Н 2 СО з и ее соли: M I 2 СОз и M I НСОз (карбонаты и гидрокарбонаты соответственно).

Большинство карбонатов нерастворимо в воде. Растворимые в воде карбонаты подвергаются значительному гидролизу:

COз 2- +H 2 0 COз-+OH - (I ступень).

Из-за полного гидролиза из водных растворов нельзя выделить карбонаты Cr 3+ , ai 3 +, Ti 4+ , Zr 4+ и др.

Практически важными являются Ка 2 СОз (сода), К 2 СОз (поташ) и СаСОз (мел, мрамор, известняк). Гидрокарбонаты в отличие от карбонатов растворимы в воде. Из гидрокарбонатов практическое применение находит NaHCО 3 (питьевая сода). Важными основными карбонатами являются 2СиСОз-Си (ОН) 2 , РЬСО 3 Х ХРЬ (ОН) 2 .

Свойства галогенидов углерода приведены в табл.6. Из галогенидов углерода самое большое значение имеет-бесцветная, достаточно токсичная жидкость. В обычных условиях ССІ 4 химически инертен. Его применяют как невоспламеняющийся и негорючий растворитель смол, лаков, жиров, а также для получения фреона CF 2 CІ 2 (Т кип = 303 К):

Другой используемый в практике органический растворитель - сероуглерод CSa (бесцветная, летучая жидкость с Ткип=319 К) – реакционно способное вещество:

CS 2 +30 2 =C0 2 +2S0 2 +258 ккал/моль,

CS 2 +3Cl 2 =CCl 4 -S 2 Cl 2, CS 2 +2H 2 0==C0 2 +2H 2 S, CS 2 +K 2 S=K 2 CS 3 (соль тиоугольной кислоты Н 2 СSз).

Пары сероуглерода ядовиты.

Циановодородная (синильная) кислота HCN (H-C = N) - бесцветная легко подвижная жидкость, кипящая при 299,5 К. При 283 К она затвердевает. HCN и ее производные чрезвычайно ядовиты. HCN можно получить по реакции

В воде синильная кислота растворяется; при этом она слабо диссоциирует

HCN=H++CN-, К=6,2.10- 10 .

Соли синильной кислоты (цианиды) в некоторых реакциях напоминают хлориды. Например СН -- -ион с ионами Ag+ дает плохо растворимый в минеральных кислотах белый осадок цианида серебра AgCN. Цианиды щелочных и щелочноземельных металлов растворимы в воде. Из-за гидролиза их растворы пахнут синильной кислотой (запах горького миндаля). Цианиды тяжелых металлов плохо растворимы в воде. CN - -сильный лиганд, важнейшими комплексными соединениями являются K 4 и Кз [Ре (СN) 6 ].

Цианиды - непрочные соединения, при длительном воздействии содержащегося в воздухе СO 2 цианиды разлагаются

2KCN+C0 2 +H 2 0=K 2 C0 3 +2HCN.

(CN) 2 - дициан (N=C-C=N) –

бесцветный ядовитый газ; с водой взаимодействует с образованием циановой (HOCN) и синильной (HCN) кислот:

(HCN) кислот:

(CN) 2 +H 2 0==HOCN+HCN.

В этой, как и в реакции, приведенной ниже, (CN) 2 похож на галоген:

СО+ (CN) 2 =CO (CN) 2 (аналог фосгена).

Циановая кислота известна в двух таутомерных формах:

H-N=C=O==H-0-C=N.

Изомером является кислота H-0=N=C (гремучая кислота). Соли HONC взрывают (используются как детонаторы). Родановодородная кислота HSCN - бесцветная, маслянистая, летучая, легко затвердевающая (Тпл=278 К) жидкость. В чистом состоянии очень неустойчива, при ее разложении выделяется HCN. В отличие от синильной кислоты HSCN достаточно сильная кислота (К=0,14). Для HSCN характерно таутомерное равновесие:

H-N = С = S=H-S-C =N.

SCN - ион кроваво-красного цвета (реактив на ион Fe 3+). Производные от HSCN соли-роданиды - легко получить из цианидов путем присоединения серы:

Большинство роданидов растворимо в воде. Нерастворимы в воде соли Hg, Au, Ag, Си. Ион SCN-, как и CN-, склонен давать комплексы типа Мз 1 M" (SCN) 6 , где M""Cu, Mg и некоторые другие. Диродан (SCN) 2 -светло-желтые кристаллы, плавящиеся - 271 К. Получают (SCN) 2 по реакции

2AgSCN+Br 2 ==2AgBr+ (SCN) 2 .

Из других азотсодержащих соединений следует указать цианамид

и его производное - цианамид кальция CaCN 2 (Ca=N-C=N), который используется в качестве удобрения .

2.3 Карбиды металлов

Карбидами называют продукты взаимодействия углерода с металлами, кремнием и бором. Карбиды по растворимости разделяются на два класса: карбиды, растворимые в воде (или в разбавленных кислотах), и карбиды, нерастворимые в воде (или в разбавленных кислотах).

2.3.1 Карбиды, растворимые в воде и разбавленных кислотах

А. Карбиды, при растворении образующие C 2 H 2 К этой группе относятся карбиды металлов первых двух главных групп; близки к ним и карбиды Zn, Cd, La, Се, Th состава MC 2 (LaC 2 , CeC 2 , ТhC 2 .)

CaC 2 +2H 2 0=Ca (OH) 2 +C 2 H 2, ThC 2 +4H 2 0=Th (OH) 4 +H 2 C 2 +H 2 .

АНСз+ 12Н 2 0=4Аl (ОН) з+ЗСН 4, Ве 2 С+4Н 2 0=2Ве (ОН) 2 +СН 4 . По свойствам к ним близок Мn з С:

Мn з С+6Н 2 0=ЗМn (ОН) 2 +СН 4 +Н 2 .

В. Карбиды, при растворении образующие смесь углеводородов и водород. К ним относятся большинство карбидов редкоземельных металлов.

2.3.2 Карбиды, нерастворимые в воде и в разбавленных кислотах

К этой группе относится большинство карбидов переходных металлов (W, Мо, Та и др.), а также SiC, B 4 C.

Они растворяются вокислительных средах, например:

VC + 3HN0 3 + 6HF = HVF 6 + СO 2 + 3NO + 4Н 2 0, SiC+4KOH+2C0 2 =K 2 Si0 3 +K 2 C0 3 +2H 2 0.

Рисунок 3. Икосаэдр B 12

Практически важными являются карбиды переходных металлов, а также карбиды кремния SiC и бора B 4 C. SiC - карборунд - бесцветные кристаллы с решеткой алмаза, по твердости приближающийся к алмазу (технический SiC за счет примесей имеет темную окраску). SiC очень огнеупорен, теплопроводен и при высокой температуре электропроводен, химически чрезвычайно инертен; его можно разрушить только при сплавлении на воздухе со щелочами.

B 4 C - полимер. Решетка карбида бора построена из линейно расположенных трех атомов углерода и групп, содержащих 12 атомов В, расположенных в форме икосаэдра (рис.3); твердость B4C превышает твердость SiC.

Глава 3. Соединения кремния

Отличие химии кремния от углерода в основном обусловлено большими размерами его атома и возможностью использования свободных Зй-орбиталей. Из-за дополнительного связывания (по донорно-акцепторному механизму) связи кремния с кислородом Si-О-Si и фтором Si-F (табл.17.23) более прочны, чем у углерода, а из-за большего размера атома Si по сравнению с атомом С связи Si-Н и Si-Si менее прочны, чем у углерода. Атомы кремния практически не способны давать цепи. Аналогичный углеводородам гомологический ряд кремневодородов SinH2n+2 (си-ланы) получен лишь до состава Si4Hio. Из-за большего размера у атома Si слабо выражена и способность к л-перекрыванию, поэтому не только тройные, но и двойные связи для него малохарактерны.

При взаимодействии кремния с металлами образуются силициды (Ca 2 Si, Mg 2 Si, BaSi 2 , Cr 3 Si, CrSi 2 и др.), похожие во многом на карбиды. Силициды не характерны для элементов I группы (кроме Li). Галогениды кремния (табл.5) более прочные соединения, чем галогениды углерода; вместе с тем водой они разлагаются.

Таблица 5. Прочность некоторых связей углерода и кремния

Наиболее прочным галогенидом кремния является SiF 4 (разлагается только под действием электрического разряда), но так же, как и другие галогениды, подвергается гидролизу. При взаимодействии SiF 4 с HF образуется гексафторокремниевая кислота:

SiF 4 +2HF=H 2 .

H 2 SiF 6 по силе близка к H 2 S0 4 . Производные этой кислоты - фторосиликаты, как правило, растворимы в воде. Плохо растворимы фторосиликаты щелочных металлов (кроме Li и NH 4). Фторосиликаты используются как ядохимикаты (инсектициды).

Практически важным галогенидом является SiCO 4 . Он используется для получения кремнийорганических соединений. Так, SiCL 4 легко взаимодействует со спиртами с образованием эфиров кремниевой кислоты HaSiO 3:

SiCl 4 +4C 2 H 5 OH=Si (OC 2 H 5) 4 +4HCl 4

Таблица 6. Галогениды углерода и кремния

Эфиры кремниевой кислоты, гидролизуясь, образуют силиконы - полимерные вещества цепочечного строения:

(R-органический радикал), которые нашли применение для получения каучуков, масел и смазок.

Сульфид кремния (SiS 2) n-полимерное вещество; при обычной температуре устойчив; разлагается водой:

SiS 2 + ЗН 2 О = 2H 2 S + H 2 SiO 3 .

3.1 Кислородные соединения кремния

Важнейшим кислородным соединением кремния является диоксид кремния SiO 2 (кремнезем), имеющий несколько кристаллических модификаций.

Низкотемпературная модификация (до 1143 К) называется кварцем. Кварц обладает пьезоэлектрическими свойствами. Природные разновидности кварца: горный хрусталь, топаз, аметист. Разновидностями кремнезема являются халцедон, опал, агат,. яшма, песок.

Кремнезем химически стоек; на него действуют лишь фтор, плавиковая кислота и растворы щелочей. Он легко переходит в стеклообразное состояние (кварцевое стекло). Кварцевое стекло хрупко, химически и термически весьма стойко. Отвечающая SiO 2 кремниевая кислота не имеет определенного состава. Обычно кремниевую кислоту записывают в виде xH 2 O-ySiO 2 . Выделены кремниевые кислоты: H 2 SiO 3 (H 2 O-SiO 2) - метакремниевая (три-оксокремниевая), H 4 Si0 4 (2H 2 0-Si0 2) - ортокремниевая (тетра-оксокремниевая), H 2 Si2O 5 (H 2 O * SiO 2) - диметакремниевая.

Кремниевые кислоты - плохо растворимые вещества. В соответствии с менее металлоидным характером кремния по сравнению с углеродом H 2 SiO 3 как электролит слабее Н 2 СОз.

Отвечающие кремниевым кислотам соли-силикаты-в воде нерастворимы (кроме силикатов щелочных металлов). Растворимые силикаты гидролизуются по уравнению

2SiOз 2 -+H 2 0=Si 2 O 5 2 -+20H-.

Концентрированные растворы растворимых силикатов называют жидким стеклом. Обычное оконное стекло-силикат натрия и кальция-имеет состав Na 2 0-CaO-6Si0 2 . Его получают по реакции

Известно большое разнообразие силикатов (точнее, оксосиликатов). В строении оксосиликатов наблюдается определенная закономерность: все состоят из тетраэдров Si0 4 , которые через атом кислорода соединены друг с другом. Наиболее распространенными сочетаниями тетраэдров являются (Si 2 O 7 6 -), (Si 3 O 9) 6 - , (Si 4 0 l2) 8- , (Si 6 O 18 12 -), которые как структурные единицы могут объединяться в цепочки, ленты, сетки и каркасы (рис 4).

Важнейшими природными силикатами являются, например, тальк (3MgO * H 2 0-4Si0 2) и асбест (SmgO*H 2 O*SiO 2). Как и для SiO 2 , для силикатов характерно стеклообразное (аморфное) состояние. При управляемой кристаллизации стекла можно получить мелкокристаллическое состояние (ситаллы). Ситаллы характеризуются повышенной прочностью.

Кроме силикатов в природе широко распространены алюмосиликаты. Алюмосиликаты - каркасные оксосиликаты, в которых часть атомов кремния заменена на трехвалентный Аl; например Na 12 [ (Si, Al) 0 4 ] 12 .

Для кремниевой кислоты характерно коллоидное состояниепри воздействии на ее соли кислот H 2 SiO 3 выпадает не сразу. Коллоидные растворы кремниевой кислоты (золи) при определенных условиях (например, при нагревании) можно перевести в прозрачную, однородную студнеобразную массу-гель кремниевой кислоты. Гели - высокомолекулярные соединения с пространственной, весьма рыхлой структурой, образованной молекулами Si0 2 , пустоты которой заполнены молекулами H 2 O. При обезвоживании гелей кремниевой кислоты получают силикагель - пористый продукт, обладающий высокой адсорбционной способностью.

Рисунок 4. Строение силикатов.

Выводы

Рассмотрев в своей работе химические соединения на основе кремния и углерода, я пришла к выводу, что углерод, являясь не очень распространённым количественно элементом есть важнейшим составляющим земной жизни, существуют его соединения в воздухе, нефти а также в таких простых веществах как алмаз и графит. Одной из важнейших характеристик углерода есть прочные ковалентные связи между атомами, а также атомом водорода. Важнейшими неорганическими соединениями углерода являются: оксиды, кислоты, соли, галогениды, азотосодержащие производные, сульфиды, карбиды.

Говоря о кремнии необходимо отметить большие количества его запасов на земле, он является основой земной коры и встречается в огромном многообразии силикатов, песка и т.д. В настоящее время использование кремния из-за его качеств полупроводника возврастает. Он используется в электронике при производстве компьютерных процессоров, микросхем и чипов. Соединения кремния с металлами образуют силициды, важнейшим кислородным соединением кремния есть оксид кремния SiO 2 (кремнезем) В природе есть большое разнообразие силикатов - это тальк, асбест, также распространены алюмосиликаты.

Список литературы

1. Большая советская энциклопедия. Третье издание. Т.28. - М.: Советская энциклопедия, 1970.

2. Жиряков В.Г. Органическая химия.4-е изд. - М., "Химия", 1971.

3. Краткая химическая энциклопедия. - М. "Советская энциклопедия", 1967.

4. Общая химия / Под ред. Е.М. Соколовской, Л.С. Гузея.3-е изд. - М.: Изд-во Моск. ун-та, 1989.

5. Мир неживой природы. - М., "Наука", 1983.

6. Потапов В.М., Татаринчик С.Н. Органическая химия. Учебник.4-е изд. - М.: "Химия", 1989.