Реферат: Элементарные частицы. Общие сведения об элементарных частицах

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ , в узком смысле - частицы, к-рые нельзя считать Состоящими из других частиц. В совр. физике термин "элементарные частицы" используют в более широком смысле: так наз. мельчайшие частицы материи, подчиненные условию, что они не являются и (исключение составляет ); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.
Э лементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимод. обычно не учитывается. Все элементарные частицы разделяют на три осн. группы. Первую составляют т. наз. бозоны- переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физ. воздействия и является одной из фундам. физ. постоянных; принято, что с = (299792458 1,2) м/с.
Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное , мюонное , тяжелый-лептон и соответствующее . (символ е) считается материальным наименьшей массы в природе m с, равной 9,1 x 10 -28 г (в энергетич. единицах 0,511 МэВ) и наименьшего отрицат. электрич. заряда е = 1,6 x 10 -19 Кл. (символ) - частицы с массой ок. 207 масс (105,7 МэВ) и электрич. зарядом, равным заряду ; тяжелый-лептон имеет массу ок. 1,8 ГэВ. Соответствующие этим частицам три типа - электронное (символ v c), мюонное (символ) и-нейтрино (символ) - легкие (возможно, безмассовые) электрически нейтральные частицы.
Все лептоны имеют ( - ), т. е. по статистич. св-вам являются фермионами (см. ).
Каждому из лептонов соответствует , имеющая те же значения массы, и др. характеристик, но отличающаяся знаком электрич. заряда. Существуют (символ е +) - по отношению к , положительно заряженный (символ) и три типа антинейтрино (символ), к-рым приписывают противоположный знак особого квантового числа, наз. лептонным зарядом (см. ниже).
Третья группа элементарных частиц,- адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу . Это наиб. многочисленная группа элементарных частиц. Адроны делятся на барионы - частицы со мезоны - частицы с целочисленным (О или 1); а также т. наз. резонансы - короткоживущие адронов. К барионам относят (символ р) - ядро с массой, в ~ 1836 раз превышающей m с и равной 1,672648 x 10 -24 г (938,3 МэВ), и положит. электрич. зарядом, равным заряду , а также (символ n) - электрически нейтральная частица, масса к-рой немного превышает массу . Из и построены все , именно сильное взаимод. обусловливает связь этих частиц между собой. В сильном взаимодействии и имеют одинаковые св-ва и рассматриваются как два одной частицы - нуклона с изотопич. (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной:-гиперон имеет массу 1116 МэВ,-гиперон- 1190 МэВ,-гиперон -1320 МэВ,-гиперон- 1670 МэВ. Мезоны имеют массы, промежуточные между массами и (-мезон, K-мезон). Существуют мезоны нейтральные и заряженные (с положит. и отрицат. элементарным электрич. зарядом). Все мезоны по своим сгатистич. св-вам относятся к бозонам.

Основные свойства элементарных частиц. Каждая элементарная частица описывается набором дискретных значений физ. величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, электрич. заряд.
В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности совр. измерений) являются: (время жизни более 5 -10 21 лет), (более 10 31 лет), фотон и . К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимод., их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимод., их характерные времена жизни 10 -22 -10 -24 с.
Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L) и барионный (символ В)заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундам. взаимод. Для лептонных и их L имеют противоположные знаки; для барионов В = 1, для соответствующих В = -1.
Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - ,-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными св-вами по отношению к сильному взаимод., но с разл. значениями электрич. заряда; простейший пример -протон и . Общее квантовое число для таких элементарных частиц - т. наз. изотопич. , принимающий, как и обычный , целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения1.
Важное св-во элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или др. взаимодействий. Один из видов взаимопревращений - т. наз. рождение , или образование одновременно частицы и (в общем случае - образование элементарных частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных е - е + , мюонных новых тяжелых частиц при столкновениях лептонов, образование из кварков cc- и bb-состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция при столкновениях частиц с образованием конечного числа фотонов (квантов). Обычно образуются 2 фотона при нулевом суммарном сталкивающихся частиц и 3 фотона - при суммарном , равном 1 (проявление закона сохранения зарядовой четности).
При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - е - е + и Эти нестабильные системы, часто наз. , их время жизни в в-ве в большой степени зависит от св-в в-ва, что позволяет использовать для изучения структуры конденсир. в-ва и кинетики быстрых хим. р-ций (см. , ).

Кварковая модель адронов. Детальное рассмотрение квантовых чисел адронов с целью их позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими св-вами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутр. четность, но различаются значениями электрич. заряда (частицы изотопич. мультиплета) и странности. С унитарными группами связаны св-ва , их обнаружение явилось основой для вывода о существовании особых структурных единиц, из к-рых построены адроны,-кварков. Считают, что адроны представляют собой комбинации 3 фундам. частиц со 1 / 2: и-кварков, d-кварков и s-кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.
Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж. Цвейг и независимо от него М. Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с ) были включены еще 2 кварка - "очарованный" (с) и "красивый" (b), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено разл. сочетаниями и-, d-, s-, с- и b-кварков, образующих связные состояния. Обычным адронам ( ,-мезонам) соответствуют связные состояния, построенные из и- и d-кварков. Наличие в адроне наряду с и- и d-кварками одного s-, с- или b-кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".
Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в кон. 60-х - нач.
70-х гг. 20 в. Кварки фактически стали рассматриваться как новые элементарные частицы- истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает предполагать, что они являются теми элементарными частицами, к-рые замыкают цепь структурных составляющих в-ва. Существуют теоретич. и эксперим. доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т. е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц в-ва. Возможно, что кварки выступают как последняя ступень материи.

Краткие исторические сведения. Первой открытой элементарной частицей был - отрицат. электрич. заряда в обоих знаков электрич. заряда (К. Андерсон и С. Неддермейер, 1936), и К-мезоны (группа С. Пауэлла, 1947; существование подобных частиц было предположено X. Юкавой в 1935). В кон. 40-х - нач. 50-х гг. были обнаружены "странные" частицы. Первые частицы этой группы - К + - и К - -мезоны, Л-гипероны - были зафиксированы также в космич. лучах.
С нач. 50-х гг. ускорители превратились в осн. инструмент исследования элементарных частиц. Были открыты антипротон (1955), антинейтрон (1956), анти--гиперон (1960), а в 1964 - самый тяжелый W -гиперон. В 1960-х гг. на ускорителях обнаружили большое число крайне неустойчивых резонансов. В 1962 выяснилось, что существуют два разных : электронное и мюонное. В 1974 обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые (по сравнению с обычными резонансами) частицы, к-рые оказались тесно связанными с новым семейством элементарных частиц - "очарованных", их первые представители открыты в 1976. В 1975 обнаружен тяжелый аналог и --лептон, в 1977 - частицы с массой порядка десяти протонных масс, в 1981 - "красивые" частицы. В 1983 открыты самые тяжелые из известных элементарных частиц - бозоны (масса80 ГэВ) и Z° (91 ГэВ).
Т. обр., за годы, прошедшие после открытия , выявлено огромное число разнообразных микрочастиц. Мир элементарных частиц оказался сложно устроенным, а их св-ва во многих отношениях неожиданными.

Лит.: Коккедэ Я., Теория кварков, [пер. с англ.], М., 1971; Марков М. А., О природе материи, М., 1976; Окунь Л.Б., Лептоны и кварки, 2 изд., М., 1990.

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9 10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Популярная философия. Учебное пособие Гусев Дмитрий Алексеевич

4. Элементарные частицы

4. Элементарные частицы

До конца 19 века считалось, что атомы представляют собой неделимые частицы вещества. После революционных открытий в физике, сделанных на рубеже прошлого и нынешнего столетий было установлено, что атомы делимы и имеют сложное строение. Они состоят из различных более мелких частиц, взаимодействующих друг с другом, благодаря чему возможны различные атомные изменения и превращения. Эти частицы были названы элементарными (лат. elementarius – первоначальный, простейший). Сначала они считались (вместо атомов) последним и неделимым пределом вещества, основой всех материальных объектов или физических тел. Однако, в скором времени стала понятной условность, или относительность термина «элементарный», потому что выяснилось, что элементарные частицы, во-первых, вовсе не неделимы и совсем не просты, а, наоборот, представляют собой сложные микрообъекты с определенной структурой (устройством или строением), то есть, оказалось, что они никак не элементарны; и, во-вторых, их нельзя называть частицами в полном смысле этого слова, потому что они характеризуются корпускулярно-волновым дуализмом. Тем не менее исторически сложившееся название продолжает существовать.

Дальнейшее проникновение науки в глубины микромира было связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой из них в конце 19 века был открыт электрон, а затем в первые десятилетия 20 века – фотон, протон, позитрон и нейтрон. К середине нынешнего столетия благодаря использованию современной экспериментальной техники было установлено существование более 300 видов элементарных частиц.

Основными их свойствами являются масса, заряд, среднее время жизни и участие в тех или иных типах взаимодействий. Существуют элементарные частицы, не имеющие массы. Это фотоны. Другие частицы по массе делятся на лептоны (греч. leptos – легкий), мезоны (греч. mesos – средний) и барионы (греч. barys – тяжелый). Все известные частицы обладают положительным, отрицательным или нулевым электрическим зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Не так давно была высказана гипотеза о существовании частиц с дробным электрическим зарядом (1/3 или 2/3 от заряда электрона). Они были названы кварками . Экспериментального подтверждения эта гипотеза пока не нашла. По времени жизни элементарные частицы делятся на стабильные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно они играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны. Они существуют около 10–10 – 10–24 сек., после чего распадаются. Элементарные частицы со средним временем жизни 10–23 – 10–22 сек. называются резонансами . Вследствие краткого времени существования они распадаются еще до того, как успеют покинуть атом или атомное ядро. Эти частицы вычислены теоретически, обнаружить их в реальных экспериментах пока не удается.

Важной характеристикой элементарных частиц является тип взаимодействия. По современным представлениям, в природе существуют четыре вида взаимодействий: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие проявляется только в микромире, происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии около 10–13 см. Сильное взаимодействие очень прочно связывает частицы, в результате чего возникают атомные ядра – наиболее прочные объекты природы.

Слабое взаимодействие , как и сильное, проявляется только в микромире. Оно действует на расстоянии от 10–15 до 10–22 см и связано, главным образом, с распадом частиц. По современным представлениям большинство частиц нестабильно именно благодаря слабому взаимодействию.

Электромагнитное взаимодействие , в отличие от сильного и слабого, проявляется и в микромире, и в макромире, и в мегамире, но играет решающую роль в структуре макромира. Это взаимодействие в тысячу раз слабее сильного, но действует на гораздо больших расстояниях, чем оно. В результате него электроны и атомные ядра соединяются в атомы, атомы – в молекулы, молекулы – в макротела и т. д.

Гравитационное взаимодействие не проявляется в микромире. Оно проявляется в макромире и, особенно, в мегамире, играя первостепенную роль в структуре последнего. Это взаимодействие не учитывается в теории элементарных частиц. В космических масштабах оно, наоборот, имеет решающее значение, так как представляет собой не что иное, как всемирное тяготение (взаимное притяжение огромных космических объектов – планет и звезд). Расстояние, на котором оно действует, неограниченно.

Если физические тела состоят из молекул, молекулы – из атомов, а атомы – из элементарных частиц, то вроде логично было бы предположить, что элементарные частицы складываются, в свою очередь, из более мелких частиц. Однако такой вывод сделать невозможно, потому что на элементарном уровне существуют иные законы и все, к чему мы привыкли в макромире, там не действует. Например, мы прекрасно знаем, что если какое-нибудь тело распадается на части, то любая часть будет и по размерам, и по массе меньше исходного целого тела. А если распадется элементарная частица, то вполне может быть, что продукты ее распада окажутся по размерам и по массе больше исходной распавшейся частицы, что невероятно с точки зрения наших привычных представлений. Правильнее поэтому было бы говорить, что элементарные частицы не распадаются, а преобразуются или превращаются. Как то ни удивительно, но одна частица может превращаться в другую. Также почти каждая элементарная частица может быть как бы «составной частью» любой другой элементарной частицы. Если частицы способны к превращениям и другим сложным изменениям, значит они имеют какую-то внутреннюю структуру или устройство. Какое? На этот вопрос современная наука пока не в состоянии ответить. Единственное, что можно утверждать – это несомненное наличие у элементарных частиц этой структуры. Однако невозможно говорить, что она представляет собой еще более мелкие частицы. Здесь мы сталкиваемся с неведомым пока уровнем существования материи, который лежит глубже сферы элементарных частиц и представляет собой нечто совершенно для нас новое, непривычное, необыкновенное, сложновыразимое в существующих ныне научных понятиях и с трудом укладывающееся в современные научные представления и теории. Дальнейшее проникновение в глубинные тайны микромира, по всей видимости, будет делом науки 21 века.

Наиболее важными для описания и объяснения микромира являются два положения современного естествознания – это принцип дополнительности датского ученого Нильса Бора и принцип соотношения неопределенностей немецкого ученого Вернера Гейзенберга. Согласно принципу дополнительности корпускулярные и волновые свойства объектов микромира не исключают, а дополняют друг друга; микромир является такой специфической реальностью, что адекватное его описание возможно как раз посредством идеи о взаимодополняемости вроде бы несовместимых свойств – корпускулярных и волновых. Согласно принципу соотношения неопределенностей в микромире невозможно одинаково точно определить координату частицы и ее скорость, определенность одного из этих параметров обуславливает неопределенность другого. Известное уравнение Гейзенберга представляет собой произведение неопределенности координаты частицы и неопределенности ее скорости, которое равно постоянной величине (постоянной Планка). Таким образом, когда неопределенность одного из членов произведения стремится к нулю (т. е. он является определенным), тогда неопределенность другого стремится к бесконечности (т. е. он является совершенно неопределенным). Принципы дополнительности и соотношения неопределенностей, приемлемые для микромира, немыслимы для макромира: будучи примененными в нем, они приводят к нелепостям и абсурду.

Например, согласно принципу дополнительности корпускулы (объекты) могут быть волнами (процессами) и наоборот. В макромире объект – это не процесс, а процесс – не объект, иначе придется предположить, что, например, маятник (объект) и колебания маятника (процесс) могут быть одним и тем же: маятник – это колебания маятника, а колебания маятника – это маятник. Получается абсурд. То же и с принципом соотношения неопределенностей. Например, зная, что пуля вылетела из ружейного ствола и движется со скоростью 800 м/с, мы спрашиваем, на каком расстоянии от ствола она сейчас находится, и отвечаем на этот вопрос примерно так: «Если нам известна скорость пули, то ее местонахождение (координата) совершенно неизвестно – она может быть сейчас на Луне, в Антарктиде, в другой галактике и т. п.». Или наоборот, зная, что пуля, вылетевшая из ружейного ствола, находится в метре от него, мы спрашиваем, с какой скоростью она сейчас движется, и отвечаем примерно так: «Если нам известно местоположение пули (координата), то именно поэтому нам совершенно неизвестна ее скорость – она сейчас может быть равна нулю или скорости света и т. п.».

Принципы дополнительности и соотношения неопределенностей, созданные для описания микромира и мысленно примененные к макромиру, вполне свидетельствуют о том, что эти две области реальности отличаются друг от друга не только количественно (по принципу – большего или меньшего размера), но и качественно, представляя собой действительно два разных мира со своими специфическими особенностями и свойствами. Здесь мы еще раз сталкиваемся с одним из важных законов философской диалектики – законом перехода количественных изменений в качественные.

Из книги Феномен человека автора де Шарден Пьер Тейяр

1. ЭЛЕМЕНТАРНЫЕ ФОРМЫ ДВИЖЕНИЯ ЖИЗНИ А. СамовоспроизведениеВ основе всего процесса образования вокруг Земли оболочки биосферы лежит типично жизненный механизм самовоспроизведения. Всякая клетка в определенный момент делится (путем "бинарного деления", или

Из книги Краткая история философии [Нескучная книга] автора Гусев Дмитрий Алексеевич

12.3. Лилипуты пространства и времени (элементарные частицы) После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны

Из книги Любители мудрости [Что должен знать современный человек об истории философской мысли] автора Гусев Дмитрий Алексеевич

Элементарные частицы. Лилипуты пространства и времени После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны разные

Из книги Конец науки: Взгляд на ограниченность знания на закате Века Науки автора Хорган Джон

Джон Уилер и «Это из частицы» Как кажется, Бете, Вайнберг и Мермин предполагали, что квантовая механика, по крайней мере в качественном смысле, и есть окончательная теория физики. Некоторые физики и философы предположили, что они смогут пенять квантовую механику, если

Из книги Обоснование интуитивизма [ёфицировано] автора Лосский Николай Онуфриевич

Глава IX. Элементарные методы знания I. Теория интуитивизма (теория непосредственного усмотрения связи основания и следствия) Суждение есть акт дифференциации объекта путём сравнения. В результате этого акта, при успешном выполнении его, мы имеем предикат P, т. е.

Из книги Человеческое познание его сферы и границы автора Рассел Бертран

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

5.11. Местонахождение частицы и ее количество движения Еще более наглядным примером такого рода является квантовомеханическая концепция положения частицы в пространстве. Выше мы говорили о том, что состояние частицы может включать в себя суперпозицию двух или более

Из книги Удивительная философия автора Гусев Дмитрий Алексеевич

Лилипуты пространства и времени. Элементарные частицы После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны разные

Из книги Философия в систематическом изложении (сборник) автора Коллектив авторов

Б. Элементарные явления душевной жизни Чтобы сохранить себя в борьбе с внешним миром, душе необходимо ориентироваться в этом мире, а для того, чтобы проявить свою индивидуальность, ей нужен материал, который опять-таки доставляется ей из внешнего мира. Этот материал она

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Квантовое состояние частицы Как выглядит «физическая реальность» на квантовом уровне, где различные «альтернативные возможности», открытые перед системой, должны всегда обладать способностью сосуществовать, образуя суммы со странными комплекснозначными весами?

Из книги Процессуальный ум. Руководство по установлению связи с Умом Бога автора Минделл Арнольд

Четыре силы и их виртуальные частицы Давайте сосредоточимся на TOE физики, так называемой «единой теории поля» и подумаем о силах и полях. В сегодняшней физике есть повседневная реальность, состоящая из пространства, времени и объектов. Внутри объектов имеются различные

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

Частицы и волны В 1690 г., когда Ньютон писал свои «Принципы», в которых выражались его идеи относительно физики и математики, европейское Возрождение было в самом разгаре. Ньютон представлял себе частицы как неделимые порции материи с конкретным известным местоположением

Из книги автора

Сновидения и частицы Корпускулярно-волновое описание материи, наблюдаемой в общепринятой реальности, и ее загадочная непознаваемая природа вне ОР не столь чужды нашему пониманию, как мы могли бы поначалу подумать. Психологи хорошо знают эту проблему; они должны часто

Из книги автора

33. Атомная энергия и виртуальные частицы Постепенно создавая духовное тело с помощью медитативных упражнений, китайцы пытались в этой жизни отделять энергии, связанные с обычным телом и таким образом наделять… самость – новым телом… Таким способом вокруг

Из книги автора

Виртуальные части и частицы в психологии Здесь важно вспомнить, что мы делаем множество вещей, которые не можем видеть. Психология, как и физика, полна виртуальных вещей, частей и частиц. Большинство школ психологии говорят о таких виртуальных вещах, как тень, анимус,

Из книги автора

Виртуальные частицы и внутренняя работа Понятие частицы эволюционировало во времени. В первой части XX в. понятие четко ограниченной частицы материи, появившееся четыре века назад, превратилось в понятие волноподобного пакета в квантовой механике. Теперь, в новейшей

К физике атомного ядра тесно прилегает физика элементарных частиц. Эта область современной науки базируется на квантовых представлениях и в своем развитии всё дальше проникает в глубину материи, открывая загадочный мир ее первооснов. В физике элементарных частиц чрезвычайно велика роль теории. В силу невозможности прямого наблюдения таких материальных объектов их образы ассоциируются с математическими уравнениями, с наложенными на них запрещающими и разрешающими правилами.

По определению элементарные частицы — это первичные, неразложимые образования, из которых, по предположению, состоит вся материя. На самом же деле этот термин употребляется в более широком смысле — для обозначения обширной группы микрочастиц материи, структурно не объединенных в ядра и атомы. Большинство объектов исследования физики элементарных частиц не отвечают строгому определению элементарности, поскольку представляют собой составные системы. Поэтому частицы, удовлетворяющие этому требованию, принято называть истинно элементарными.

Первой элементарной частицей, открытой в процессе изучения микромира еще в конце XIX в., был электрон. Следующим был открыт протон (1919), затем пришла очередь нейтрона, открытого в 1932 г. Существование позитрона теоретически было предсказано П. Дираком в 1931 г., и в 1932 г. этот положительно заряженный «двойник» электрона был обнаружен в космических лучах Карлом Андерсоном. Предположение о существовании в природе нейтрино было выдвинуто В. Паули в 1930 г., а экспериментально оно было обнаружено только в 1953 г. В составе космических лучей в 1936 г. были найдены мю-мезоны (мюоны) — частицы обоих знаков электрического заряда с массой около 200 масс электрона. Во всем остальном свойства мюонов очень близки к свойствам электрона и позитрона. Также в космических лучах в 1947 г. были открыты положительный и отрицательный пи-мезоны, существование которых было предсказано японским физиком Хидэки Юкавой в 1935 г. В дальнейшем выяснилось, что существует также нейтральный пи-мезон.

В начале 50-х гг. была открыта большая группа частиц с весьма необычными свойствами, что побудило назвать их «странными». Первые частицы этой группы были обнаружены в космических лучах, это К-мезо- ны обоих знаков и К-гиперон (лямбда-гиперон). Отметим, что мезоны получили свое название от греч. «средний, промежуточный» в силу того, что массы первых открытых частиц этого типа (пи-мезоны, мю-мезоны) имеют массу, промежуточную между массой нуклона и электрона. Гипероны же ведут свое название от греч. «сверх, выше», поскольку их массы превышают массу нуклона. Последующие открытия странных частиц делались уже на ускорителях заряженных частиц, которые стали основным инструментом изучения элементарных частиц.

Так были открыты антипротон, антинейтрон и ряд гиперонов. В 60-е гг. было обнаружено значительное число частиц с крайне малым временем жизни, которые получили названиерезонансов. Как выяснилось, к резонансам относится большинство известных элементарных частиц. В середине 70-х гг. было открыто новое семейство элементарных частиц, получивших романтическое название «очарованных», а в начале 80-х — семейства «красивых» частиц и так называемых промежуточных векторных бозонов. Открытие этих частиц явилось блестящим подтверждением теории, основанной на кварковой модели элементарных частиц, которая предсказала существование новых частиц задолго до их обнаружения.

Таким образом, за время после открытия первой элементарной частицы — электрона — в природе выявлено множество (около 400) микрочастиц материи, и процесс открытия новых частиц продолжается. Оказалось, что мир элементарных частиц устроен весьма и весьма сложно, а их свойства разнообразны и зачастую крайне неожиданны.

Все элементарные частицы являются материальными образованиями чрезвычайно малых масс и размеров. Большинство из них имеют массы порядка массы протона (~10 -24 г) и размеры порядка 10 -13 м. Это определяет сугубо квантовую специфику их поведения. Важное квантовое свойство всех элементарных частиц (включая и относящийся к ним фотон) состоит в том, что все процессы с ними происходят в виде последовательности актов их испускания и поглощения (способность рождаться и уничтожаться при взаимодействии с другими частицами). Процессы с участием элементарных частиц относятся ко всем четырем видам фундаментального взаимодействия, сильному, электромагнитному, слабому и гравитационному. Сильным взаимодействием обусловлена связь нуклонов в атомном ядре. Электромагнитное взаимодействие обеспечивает связь электронов с ядрами в атоме, а также связь атомов в молекулах. Слабое взаимодействие вызывает, в частности, распад квазистабильных (т. е. относительно долгоживущих) частиц, имеющих время жизни в пределах 10 -12 -г 10 -14 с. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях ~10 -13 см, в силу малости их массы, имеет крайне малую интенсивность, однако может оказаться существенным на сверхмалых расстояниях. Интенсивности взаимодействий, сильного, электромагнитного, слабого и гравитационного — при умеренной энергии процессов относятся соответственно как 1 , 10 -2 , 10 -10 , 10 -38 . Вообще же с ростом энергии частиц это соотношение изменяется.

Элементарные частицы классифицируют по различным признакам, и надо сказать, что в целом принятая их классификация достаточно сложна.

В зависимости от участия в различных видах взаимодействия все известные частицы делят на две основные группы: адроны и лептоны.

Адроны участвуют во всех видах взаимодействия, включая сильное. Они получили свое название от греч. «большой, сильный».

Лептоны не участвуют в сильном взаимодействии. Их название происходит от греч. «легкий, тонкий», поскольку массы известных до середины 70-х гг. частиц этого класса были заметно меньше масс всех других частиц (кроме фотона).

К адронам относятся все барионы (группа частиц с массой не меньше массы протона, названных так от греч. «тяжелый») и мезоны. Самым легким барионом является протон.

Лептонами являются, в частности, электрон и позитрон, мюоны обоих знаков, нейтрино трех видов (легкие, электрически нейтральные частицы, участвующие только в слабом и гравитационном взаимодействиях). Предполагается, что нейтрино столь же распространены в природе, как и фотоны, к их образованию приводит множество различных процессов. Отличительной особенностью нейтрино является его огромная проникающая способность, особенно при низких энергиях. Завершая классификацию по видам взаимодействия, следует отметить, что фотон принимает участие только в электромагнитном и гравитационном взаимодействиях. Кроме того, в соответствии с теоретическими моделями, направленными на объединение всех четырех видов взаимодействия, существует гипотетическая частица, переносящая гравитационное поле, которая получила название гравитон. Особенность гравитона состоит в том, что он (согласно теории) участвует только в гравитационном взаимодействии. Заметим, что теория связывает с квантовыми процессами гравитационного взаимодействия еще две гипотетические частицы — гра- витино и гравифотон. Экспериментальное обнаружение гравитонов, т. е., по сути, гравитационного излучения, крайне затруднено из-за его чрезвычайно слабого взаимодействия с веществом.

В зависимости от времени жизни элементарные частицы разделяют на стабильные, квазистабильные и нестабильные (резонансы).

Стабильными частицами являются электрон (его время жизни t > 10 21 лет), протон (t > 10 31 лет), нейтрино и фотон. Квазистабильными считаются частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их время жизни t > 10 -20 c. Резонансы — частицы, распадающиеся в результате сильного взаимодействия, их время жизни находится в интервале 10 -22 ^10 -24 с.

Распространенным является еще один вид подразделения элементарных частиц. Системы частиц с нулевым и целым спином подчиняются статистике Бозе-Эйнштейна, поэтому такие частицы принято называть бозонами. Совокупность же частиц с полуцелым спином описывается статистикой Ферми-Дирака, отсюда и название таких частиц — фермионы.

Каждая элементарная частица характеризуется определенным набором дискретных физических величин — квантовых чисел. Общими для всех частиц характеристиками являются масса m, время жизни t, спин J и электрический заряд Q. Спин элементарных частиц принимает значения, равные целым или полуцелым кратным постоянной Планка. Электрические заряды частиц являются целыми кратными величине заряда электрона, считающегося элементарным электрическим зарядом.

Кроме того, элементарные частицы дополнительно характеризуются так называемыми внутренними квантовыми числами. Лептонам приписывается специфический лептонный заряд L = ±1, адроны с полуцелым спином несут барионный заряд В =±1 (адроны с В = 0 образуют подгруппу мезонов).

Важной квантовой характеристикой адронов является внутренняя четность Р, принимающая значение ±1 и отражающая свойство симметрии волновой функции частицы относительно пространственной инверсии (зеркального отображения). Несмотря на несохранение четности при слабом взаимодействии, частицы с хорошей точностью принимают значения внутренней четности, равные либо +1, либо -1.

Адроны, кроме того, подразделяются на обычные частицы (протон, нейтрон, пи-мезоны), странные частицы (^-мезоны, гипероны, некоторые резонансы), «очарованные» и «красивые» частицы. Им соответствуют особые квантовые числа: странность S, очарование С и красота b. Эти квантовые числа введены в соответствии с кварковой моделью для истолкования специфических процессов, характерных для этих частиц.

Среди адронов имеются группы (семейства) частиц с близкими массами, одинаковыми внутренними квантовыми числами, но различающиеся электрическим зарядом. Такие группы называются изотопическими мулътипле- тами и характеризуются общим квантовым числом — изотопическим спином, принимающим, как и обычный спин, целые и полуцелые значения.

В чем состоит уже неоднократно упоминавшаяся кварковая модель адронов?

Обнаружение закономерности группировки адронов в мультиплеты послужило основанием для предположения о существовании особых структурных образований, из которых построены адроны, — кварков. Допуская существование таких частиц, можно считать, что все адроны являются комбинациями кварков. Эта смелая и эвристически продуктивная гипотеза была выдвинута в 1964 г. американским физиком Марри Гелл-Маном. Суть ее состояла в предположении о наличии трех фундаментальных частиц с полуцелым спином, являющихся материалом для построения адронов, u-, d- и s-кварков. В дальнейшем на основе новых экспериментальных данных кварковая модель строения адронов пополнилась еще двумя кварками, «оча- рованным» (с) и «красивым» (b). Считается возможным существование и других типов кварков. Отличительная особенность кварков состоит в том, что они обладают дробными значениями электрического и барионного зарядов, не встречающимися ни у одной из известных частиц. С кварковой моделью согласуются все экспериментальные результаты по изучению элементарных частиц.

Согласно кварковой модели, барионы состоят из трех кварков, мезоны — из кварка и антикварка. Поскольку некоторые барионы являются комбинацией трех кварков в одном и том же состоянии, что запрещено принципом Паули (см. выше), каждому типу («аромату») кварка было приписано дополнительное внутреннее квантовое число «цвет». Кварк каждого типа («аромата» — u, d, s, c, b) может находиться в трех «цветовых» состояниях. В связи с использованием цветовых понятий теория сильного взаимодействия кварков получила название квантовой хромодинамики (от греч. «цвет»).

Можно считать, что кварки являются новыми элементарными частицами, причем они претендуют на роль истинно элементарных частиц для адронной формы материи. Однако остается неразрешенной проблема наблюдения свободных кварков и глюонов. Несмотря на систематические поиски в космических лучах, на ускорителях высокой энергии, обнаружить их в свободном состоянии пока так и не удалось. Имеются веские основания считать, что здесь физика столкнулась с особым явлением природы — так называемым удержанием кварков.

Дело в том, что существуют серьезные теоретические и экспери- ментальные доводы в пользу предположения о том, что силы взаимодействия кварков с расстоянием не ослабевают. Это означает, что для разделения кварков требуется бесконечно большая энергия, следовательно, появление кварков в свободном состоянии невозможно. Это обстоятельство придает кваркам статус совершенно особых структурных единиц вещества. Возможно, именно начиная с кварков принципиально невозможно опытное наблюдение ступеней дробления материи. Признание кварков в качестве реально существующих объектов материального мира не только олицетворяет собой яркий случай первичности идеи по отношению к существованию материальной сущности. Встает вопрос о пересмотре таблицы фундаментальных мировых постоянных, ибо заряд кварка втрое меньше заряда протона, а следовательно, и электрона.

Начиная с открытия позитрона наука встретилась с частицами антивещества. Сегодня очевидным является то, что для всех элементарных частиц с ненулевыми значениями хотя бы одного из квантовых чисел, таких как электрический заряд Q, лептонный заряд L, барионный заряд В, странность S, очарование С и красота b, существуют античастицы с теми же значениями массы, времени жизни, спина, но с противоположными знаками вышеуказанных квантовых чисел. Известны частицы, тождественные своим античастицам, они называются истинно нейтральными. Примерами истинно нейтральных частиц служат фотон и один из трех пи-мезонов (два других являются по отношению друг к другу частицей и античастицей).

Характерной особенностью взаимодействия частиц и античастиц является их аннигиляция при столкновении, т. е. взаимоуничтожение с образованием других частиц и выполнением законов сохранения энергии, импульса, заряда и т. п. Типичным примером аннигиляции пары является процесс превращения электрона и его античастицы — позитрона — в электромагнитное излучение (в фотоны или гамма-кванты). Аннигиляция пар происходит не только при электромагнитном взаимодействии, но и при сильном взаимодействии. При высоких энергиях легкие частицы могут аннигилировать с образованием более тяжелых частиц — при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжелых частиц (равный сумме их энергий покоя).

При сильном и электромагнитном взаимодействиях имеет место полная симметрия между частицами и их античастицами, т. е. все процессы, происходящие между первыми, возможны и для вторых. Поэтому антипротоны и антинейтроны могут образовывать ядра атомов антивещества, т. е. из античастиц в принципе вполне может быть построено антивещество. Возникает очевидный вопрос: если каждая частица имеет античастицу, то почему же в изученной области Вселенной отсутствуют скопления антивещества? Действительно, о наличии их во Вселенной, даже где-то «вблизи» Вселенной, можно было бы судить по мощному аннигиляционно- му излучению, приходящему к Земле из области соприкосновения вещества и антивещества. Однако современная астрофизика не располагает данными, которые позволили бы хотя бы предположить наличие во Вселенной областей, заполненных антивеществом.

Как же произошел во Вселенной выбор в пользу вещества и в ущерб антивеществу, хотя законы симметрии в основном выполняются? Причиной этого феномена, скорее всего, стало именно нарушение симметрии, т. е. флуктуация на уровне основ материи.

Ясно одно: если бы такой флуктуации не возникло, участь Вселенной была бы печальной — вся ее материя существовала бы в виде бесконечного облака фотонов, появившихся в результате аннигиляции частиц вещества и антивещества.

Элементарные частицы – мельчайшие известные частицы физической материи, которые в известной мере можно считать некими «кирпичиками» мироздания на современном уровне познания материи. В узком смысле слова элементарными можно назвать частицы, у которых внутренняя структура никогда не наблюдалась. К ним относятся, например, электрон и фотон. Подавляющее большин­ство элементарных частиц (мезоны, барионы) обладают внутрен­ней структурой.

История открытия элементарных частиц занимает одно столе­тие. В 20-е гг. XX в. теория элементарных частиц была предельно проста. Были известны две частицы – электрон и протон, а также два типа взаимодействий – гравитационное и электоромагнитное. На их основе объяснялись все явления природы.

Можно выделить два основных потока открытий новых эле­ментарных частиц. Первый приходится на 30 – 50-е гг. ХХ в., когда, преж­де всего, были найдены нейтрон и позитрон. Позитрон – античас­тица по отношению к электрону; он подобен электрону во всем, но обладает положительным, а не отрицательным зарядом. При соударении электрона с позитроном, как и при соударении любой частицы с соответствующей ей античастицей, может произойти их аннигиляция, т.е. взаимное уничтожение частиц, сопровождающееся рождением новых микрочастиц и выделением энергии. Так, электрон при взаимодействии с позитроном дают два фотона.

Далее было обнаружено нейтрино. Сейчас известно несколько разновидностей нейтрино. В 1937 г. был открыт первый мезон. Он имеет отношение к ядерным взаимодействиям. К 1960 г. теория охватывала 32 эле­ментарные частицы, причем каждая новая частица была связана с открытием принципиально нового круга физических явлений. Второй поток открытий элементарных частиц пришелся на 1960 – 1965 гг. К концу этого периода число частиц превысило 200. К концу 1990-х гг. число открытых частиц и античастиц приблизилось к 400.

Характеристиками субатомных частиц являются масса, электрический заряд, спин, время жизни, магнитный момент, пространственная четность и др. Само понятие элементарности потеряло смысл, поскольку не существует критерия элементарности. Стабильных (не самораспадающихся) элементарных частиц всего четыре*: электрон, протон, фотон и все виды нейтрино. На основе этих частиц невозможно построить все остальные, обладающие способностью самопроизвольно распадаться. Среди таких ча­стиц дольше всех живет свободный нейтрон (17 мин), меньше всех – нейтральный π-мезон (10 -16 с). Однако принципа классификации, основанного на раз­личиях частиц во времени их жизни, установить не удалось.

Важным классифицирующим признаком объектов микромира является их способность участвовать в сильном взаимодействии. Частицы участвующие в сильном взаимодействии называются адронами , частиц, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами . Кроме этого, существуют частицы – переносчики взаимодействий .



К лептонам относят электрон, мюон, тау-лептон, три вида нейтрино и соответствующие им античастицы. Таким образом, общее число лептонов равно двенадцати. Нейтрино, открытые в 60-х гг. ХХ в., являются наиболее распространенными частицами во Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его нет вообще. Поэтому изучить их очень сложно. Мюон – одна из первых известных нестабильных субатомных частиц, открытая в 1936 г. Во всех отношениях напоминает электрон: имеет тот же заряд и спин, участвует в тех же взаимодействиях, но имеет большую массу и нестабилен (примерно за две миллионные доли секунды распадается на электрон и два нейтрино). Тау-лептон – также является заряженной частицей. Он был открыт в 70-х гг. ХХ в. и отличается очень большой массой – 3500 масс электрона.

Число адронов насчитывает несколько сотен, все они, за исключением нейтрона и протона, являются короткоживущими и быстро распадаются. Нестабильность адронов и их большое разнообразие указывают на то, что они не являются элементарными объектами, а построены из более мелких частиц – кварков . Большинство адронов открыто в 50 – 60-х гг. ХХ в. Адроны участвуют в сильном, слабом и электромагнитном взаимодействиях.

Если лептоны и адроны представляют собой строительный материал вещества, то существуют еще частицы, обеспечивающие четыре взаимодействия, которые являются своего рода «клеем», не позволяющим миру распадаться на части. Переносчиками электромагнитного взаимодействия является фотон, сильного взаимодействия – глюоны (связывающие кварки внутри протона), слабого взаимодейтсвия – W + , W - , Z º -бозоны (характеризуются большой массой покоя и короткой продолжительностью жизни – всего 10 -26 с). Высказывается мнение о существовании и переносчика гравитационного поля – гравитонов. По расчетам ученых они должны, подобно фотонам, иметь нулевую массу покоя и двигаться со скоростью света. Однако если у фотона спин равен 1 и при электромагнитном взаимодействии одноименно заряженные частицы отталкиваются, то спин гравитона равен 2. Это позволяет всем частицам притягиваться друг к другу. Поскольку гравитационное взаимодействие очень слабое, непосредственно зафиксировать гравитоны в эксперименте до сих пор не удалось.

В настоящее время обнаружены, так называемые, античастицы, имеющие заряд противоположный частицам (позитрон, антипротон и др.). Так, в 1932 г. позитроны были обнаружены в космических лучах*. Антипротоны, рожденные в столкновениях с ядрами медной мишени, были обнаружены в 1955 г. на новом ус­корителе в Беркли. В 1956 г. был открыт антинейтрон. Если элект­рон от позитрона и протон от антипротона отличаются, прежде всего, знаком зарядов, то чем различаются нейтрон и антинейт­рон? Нейтрон не имеет электрического заряда, но имеет связан­ное с ним магнитное поле. Причина этого не совсем ясна, хотя установлено, что магнитное поле нейтрона ориентировано в од­ном направлении, а магнитное поле антинейтрона – в противо­положном.

Кроме различий в заряде античастицы имеют и другие фундаментальные свойства по сравнению с частицами. Так, при переходе от мира к антимиру меняются местами «право» и «лево», время в антимире течет от будущего к прошло­му, а не от прошлого к будущему, как в мире. В отличие от частиц, являющихся кирпичиками нашего мира, античастицы – лишь гости, появляющиеся на мгновение в этом мире. При встрече античастиц с частицами происходит взрыв, в результате которого они взаимно уничтожаются, выделяя при этом огромное количество энергии. На основании многочисленных наблюдений за античастицами и изучения их поведения в нашем мире не­которые ученые пришли к мысли о существовании целого антимира, который подобен нашему миру и сосуществует с ним, но отличается противоположным по отношению к нему знаком.

Одним из ведущих разработчиков этой теории явился эстонский академик Г. Наан. Главным моментом ее является положение о том, что обе половинки Вселенной – мир и антимир – возникают, в конечном счете, из абсолютного вакуума. Он писал: «Утверждение о возможности возникнове­ния из ничего (пустоты, вакуума) при строгом соблюде­нии законов сохранения должно казаться предельно пара­доксальным. Ведь смысл законов сохранения в том-то и состоит, что из ничего ничего не возникает, ничто не мо­жет породить нечто. Развиваемая здесь гипотеза ни в коей мере не оспаривает этого положения. Ничто действитель­но не может породить (одно лишь) нечто, но оно порож­дает что-то большее – нечто и антинечто одновременно! В основе предлагаемой здесь гипотезы лежит, в конечном счете, тот элементарный факт, что равенство (-1)+(+1)=0 может быть прочитано и наоборот, справа налево: 0=(-1)+(+1). Последнее равенство выражает уже не только космологию, но и космогонию. Исходным «строительным материалом Вселенной» является пустота, вакуум. В среднем, суммар­но, симметричная Вселенная состоит из одной лишь пустоты. Поэтому она может возникать из пустоты при строгом соблюдении всех законов сохранения». «Тождест­венно равны нулю все пространственно-временные ин­тервалы и координаты. Симметричная Вселенная такова, что она в среднем ничего не содержит, даже пространства и времени». На примере теории Г. Наана хорошо прослеживается универсальность принципа симметрии, котором будет говориться в следующем параграфе.

Откуда же берутся в нашей Вселенной элементарные частицы и античастицы. Ученые предполагают, что из физического вакуума. Физический вакуум – это вовсе не «абсолютное ничто», а реальная физическая система, например, электромагнит­ное поле в одном из своих состояний. Более того, согласно кванто­вой теории поля, из вакуумного состояния можно получить все другие состояния поля и элементарные частицы. Физика имеет дело с определенными видами и состояниями материи, а не с материей как таковой. Аналогично и в физических исследованиях имеют дело не с «абсолютной пустотой» как пол­ным отсутствием материи и материального, а с «относительной пустотой», под которой следует понимать отсутствие некоторых классов материальных объектов и их характеристик.

Вакуум можно определить как поле с минимальной энергией. Но это не означает, что в нем вообще ничего нет. В физическом вакууме постоянно протекают слож­нейшие физические процессы, например, рождение и гибель виртуальных частиц, особого рода ваку­умные колебания электромагнитного поля, не вырывающиеся из него и не распространяющиеся. Однако, в определенные промежутки виртуальные частицы могут превращаться в реальные частицы.

Симметрия и принципы инвариантности в физике

Слово «симметрия» («symmetria») имеет греческое происхождение и означает «соразмерность». В повседневном языке под симметрией понимают чаще всего упорядоченность, гармонию, соразмерность. Гармоничная согласованность частей и целого является главным источником эстетической ценности симметрии. Кристаллы издавна восхищали нас своим совершенством, строгой симметричностью форм. Симметричные мозаики, фрески, архитектурные ансамбли будят в людях чувство прекрасного, музыкальные и поэтические произведения вызывают восхищение именно своей гармоничностью. Таким образом, можно говорить о принадлежности симметрии к категории прекрасного.

Научное определение симметрии принадлежит крупному немецкому математику Герману Вейлю (1885 – 1955), который в своей замечательной книге «Симметрия» проанализировал переход от простого чувственного восприятия симметрии к ее научному пониманию. Согласно Г. Вейлю, под симметрией следует понимать инвариантность (неизменность) свойств какого-либо объекта при определенного рода преобразованиях. Можно сказать, что симметрия есть совокупность инвариантных свойств объекта. Например, кристалл может совмещаться с самим собой при определенных поворотах, отражениях, смещениях. Многие животные обладают приближенной зеркальной симметрией при отражении левой половины тела в правую и наоборот. Однако подчиняться законам симметрии может не только материальный, но и, к примеру, математический объект. Можно говорить об инвариантности функции, уравнения при тех или иных преобразованиях системы координат. Это в свою очередь позволяет применять категорию симметрии к законам физики. Так симметрия входит в математику и физику, где она также служит источником красоты и изящества.

Постепенно физика открывает все новые виды симметрии законов природы: если вначале рассматривались лишь пространственно-временные (геометрические) виды симметрии, то в дальнейшем были открыты ее негеометрические виды (перестановочная, калибровочная, унитарная и др.). Последние относятся к законам взаимодействий, и их объединяют общим названием «динамическая симметрия».

Принципы инвариантности играют очень важную роль в современной физике: с их помощью обоснованы старые и предсказаны новые законы сохранения, облегчено решение многих фундаментальных и прикладных задач и, что особенно важно, удалось добиться первых успехов на пути объединения фундаментальных взаимодействий (теории электрослабого взаимодействия и Великого объединения). Эти принципы обладают большой общностью. Выдающийся американский физик-теоретик Ю. Вигнер отметил, что эти принципы относятся к законам природы так же, как законы природы относятся к явлениям, т.е. симметрия «управляет» законами, а законы «управляют» явлениями. Если бы не было, например, инвариантности законов природы относительно смещений в пространстве и времени, то вряд ли наука вообще смогла бы устанавливать эти законы.