Что такое идеальный газ. Идеальный газ

ОПРЕДЕЛЕНИЕ: Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия:
а) соударения молекул такого газа происходят как соударения упругих шаров, размеры которых пренебрежимо малы;
б) от столкновения до столкновения молекулы движутся равномерно и прямолинейно;
в) пренебрегают силами взаимодействия между молекулами.

Реальные газы при комнатной температуре и нормальном давлении ведут себя как идеальные газы. Идеальными газами можно считать такие газы как гелий, водород, свойства которых уже при обычных условиях отвечают закономерностям идеального газа.

Состояние некоторой массы идеального газа будет определяться значениями трех параметров: P, V, T. Эти величины, характеризующие состояние газа, называются параметрами состояния . Эти параметры закономерно связаны друг с другом, так что изменение одного из них влечет за собой изменение другого. Эта связь аналитически может быть задана в виде функции:

Соотношение, дающее связь между параметрами какого-либо тела, называется уравнением состояния . Следовательно, данное соотношение является уравнением состояния идеального газа.

Рассмотрим некоторые из параметров состояния, характеризующих состояние газа:

1) Давление (P). В газе давление возникает в результате хаотического движения молекул, в результате которого молекулы сталкиваются друг с другом и со стенками сосуда. В результате удара молекул о стенку сосуда со стороны молекул на стенку будет действовать некоторая средняя сила dF . Предположим, что площадь поверхности dS , тогда . Следовательно:

ОПРЕДЕЛЕНИЕ (механистическое): Давление – это физическая величина, численно равная силе, действующей на единицу площади поверхности, нормальную к ней.

Если сила равномерно распределена по поверхности, то . В системе СИ давление измеряется в 1Па=1Н/м 2 .

2) Температура (Т).

ОПРЕДЕЛЕНИЕ (предварительное): Температура тела – это термодинамическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

Температура одинакова для всех частей изолированной системы, находящейся в состоянии термодинамического равновесия. Т.е., если соприкасающиеся тела находятся в состоянии теплового равновесия, т.е. не обмениваются энергией путем теплопередачи, то этим телам приписывается одинаковая температура. Если при установлении теплового контакта между телами одно из них передает энергию другому посредством теплопередачи, то первому телу приписывается большая температура, чем второму.

Любое из свойств тела (температурный признак), зависящее от температуры может быть использовано для количественного определения (измерения) температуры.


Например : если в качестве температурного признака выбрать объем и считать, что с температурой объем изменяется линейно, то выбрав за “0” температуру таяния льда, а за 100° – температуру кипения воды, получим температурную шкалу, называемую шкалой Цельсия. Согласно которой состоянию, в котором термодинамическое тело имеет объем V, следует приписывать температуру:

Для однозначного определения температурной шкалы необходимо условиться, кроме способа градуировки, также о выборе термометрического тела (т.е. тела, которое выбирается для измерения) и температурного признака.

Известны две температурные шкалы:

1) t – эмпирическая или практическая шкала температур (°C). (О выборе термометрического тела и температурного признака для этой шкалы скажем позже).

2) T – термодинамическая или абсолютная шкала (°K). Эта шкала не зависит от свойств термодинамического тела (но об этом речь пойдет позже).

Температура T, отсчитанная по абсолютной шкале, связана с температурой t по практической шкале соотношением

T = t + 273,15.

Единицу абсолютной температуры называют Кельвином. Температуру по практической шкале измеряют в град. Цельсия (°C). Значения град. Кельвина и град. Цельсия одинаковы. Температура равная 0°K называется абсолютным нулем, ему соответствует t=-273,15°C

В первой части издания представлены шесть лекций, посвященных раскрытию физического смысла основных законов и понятий механики.

Вторая часть продолжает курс лекций по физике и содержит девять лекций по молекулярной физике и термодинамике.

Предметом изучения молекулярной физики является движение больших совокупностей молекул. При изучении используются статистиче­ский и термодинамический методы.

Молекулярная физика исходит из представлений о молекулярном строении вещества. Поскольку число частиц в макросистеме велико, зако­номерности вней имеют статистический, т.е. вероятностный, характер. На основе определенных моделей молекулярная физика позволяет объяс­нить наблюдаемые свойства макросистем (систем, состоящих из очень большого числа частиц) как суммарный эффект действий отдельных мо­лекул. При этом используется статистический метод, в котором нас инте­ресуют не действия отдельных молекул, а средние значения определенных величин.

В термодинамике используют понятия и физические величины, от­носящиеся к системе в целом, например, объем, давление и температура. Термодинамика основана на общих принципах, или началах, которые представляют собой обобщение опытных фактов.

Термодинамический и статистический методы изучения макросис­тем дополняют друг друга. Термодинамический метод позволяет изучать явления без знания их внутренних механизмов. Статистический метод по­зволяет понять суть явлений, установить связь поведения системы в целом с поведением и свойствами отдельных частиц.

Цель автора, как и в первой части представленного издания, - сде­лать для начинающего студента фактически доступными основные поня­тия и закономерности молекулярной физики, порой весьма непростые. Студенту нужно не «зазубривать» материал, а постараться понять, раз­мышлять, проверить себя по вопросам для самоконтроля после каждой лекции, а также прорешать соответствующие задачи, например из пособия . Максимальное внимание должно быть уделено физическому смыслу изучаемого материала.

ВНИМАНИЕ! ПРЕДЛАГАЕМОЕ ИЗДАНИЕ ОБЛЕГЧАЕТ РАБОТУ СТУДЕНТА, НО НЕ ЗАМЕНЯЕТ САМИ ЛЕКЦИИ В АУДИТОРИИ!

Молекуляная физика

Лекция №7

Молекулярно-кинетическая теория (мкт) идеального газа

    Понятие идеального газа. Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы.

    Число степеней свободы. Закон равнораспределение энергии. Внутренняя энергия идеального газа.

    Давление газа с точки зрения молекулярно-кинетической теории идеального газа (основное уравнение молекулярно-кинетической теории).

    Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева).

1. Понятие идеального газа.

Идеальным называется газ, взаимодействие, между молекулами которого пренебрежимо мало и состояние которого описывается уравнением Клапейрона-Менделеева.

Модель идеального газа .

1. Собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда.

2. Между молекулами газа отсутствует силы взаимодействия .

3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие .

Взаимодействие между молекулами всякого газа становится пренебрежимо слабым при малых плотностях газа , при большом разрежении. Такие газы как воздух, азот, кислород, даже при обычных условиях, т.е. при комнатной температуре и атмосферном давлении мало отличаются от идеального газа. Особенно близки к идеальному газу гелий и водород.

Не следует думать, что взаимодействие между молекулами идеального газа вовсе отсутствует . Напротив, его молекулы сталкиваются друг с другом и эти столкновения существенны для установления определённых тепловых свойств газа . Но столкновения проходят настолько редко , что большую часть времени молекулы движутся как свободные частицы .

Именно столкновения между молекулами позволяют ввести такой параметр как температура. Температура тела характеризует энергию, с которой движутся его молекулы. Для идеального газа в равновесных условиях абсолютная температура пропорциональна средней энергии поступательного движения молекул .

Определение . Макроскопической называется система, образованная огромным числом частиц (молекул, атомов). Параметры, характеризующие поведение системы (например, газа), как целого, называется макропараметрами . Например, давление Р , объём V и температура Т газа – макропараметры.

Параметры, характеризующие поведение отдельных молекул (скорость, масса и т.п.) называется микропараметрами .

Аннотация: традиционное изложение темы, дополненное демонстрацией на компьютерной модели.

Из трех агрегатных состояний вещества наиболее простым является газообразное состояние. В газах силы, действующие между молекулами, малы и при определенных условиях ими можно пренебречь.

Газ называется идеальным , если:

Можно пренебречь размерами молекул, т.е. можно считать молекулы материальными точками;

Можно пренебречь силами взаимодействия между молекулами (потенциальная энергия взаимодействия молекул много меньше их кинетической энергии);

Удары молекул друг с другом и со стенками сосуда можно считать абсолютно упругими.

Реальные газы близки по свойствам к идеальному при:

Условиях, близких к нормальным условиям (t = 0 0 C, p = 1.03·10 5 Па);

При высоких температурах.

Законы, которым подчиняется поведение идеальных газов, были открыты опытным путем достаточно давно. Так, закон Бойля - Мариотта установлен еще в 17 веке. Дадим формулировки этих законов.

Закон Бойля - Мариотта. Пусть газ находится в условиях, когда его температура поддерживается постоянной (такие условия называются изотермическими ).Тогда для данной массы газа произведение давления на объем есть величина постоянная:

Эту формулу называют уравнением изотермы . Графически зависимость p от V для различных температур изображена на рисунке.

Свойство тела изменять давление при изменении объема называется сжимаемостью . Если изменение объема происходит при T=const, то сжимаемость характеризуется изотермическим коэффициентом сжимаемости который определяется как относительное изменение объема, вызывающее изменение давления на единицу.

Для идеального газа легко вычислить его значение. Из уравнения изотермы получаем:

Знак минус указывает на то, что при увеличении объема давление уменьшается. Т.о., изотермический коэффициент сжимаемости идеального газа равен обратной величине его давления. С ростом давления он уменьшается, т.к. чем больше давление, тем меньше у газа возможностей для дальнейшего сжатия.

Закон Гей - Люссака. Пусть газ находится в условиях, когда постоянным поддерживается его давление (такие условия называются изобарическими ). Их можно осуществить, если поместить газ в цилиндр, закрытый подвижным поршнем. Тогда изменение температуры газа приведет к перемещению поршня и изменению объема. Давление же газа останется постоянным. При этом для данной массы газа его объем будет пропорционален температуре:

где V 0 - объем при температуре t = 0 0 C, - коэффициент объемного расширения газов. Его можно представить в виде, аналогичном коэффициенту сжимаемости:

Графически зависимость V от T для различных давлений изображена на рисунке.

Перейдя от температуры в шкале Цельсия к абсолютной температуре , закон Гей - Люссака можно записать в виде:

Закон Шарля. Если газ находится в условиях, когда постоянным остается его объем (изохорические условия), то для данной массы газа давление будет пропорционально температуре:

где р 0 - давление при температуре t = 0 0 C, - коэффициент давления . Он показывает относительное увеличение давления газа при нагревании его на 1 0:

Закон Шарля также можно записать в виде:

Закон Авогадро: один моль любого идеального газа при одинаковых температуре и давлении занимает одинаковый объем. При нормальных условиях (t = 0 0 C, p = 1.03·10 5 Па) этот объем равен м -3 /моль.

Число частиц, содержащихся в 1 моле различных веществ, наз. постоянная Авогадро :

Легко вычислить и число n 0 частиц в 1 м 3 при нормальных условиях:

Это число называется числом Лошмидта .

Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов, т.е.

где - парциальные давления - давления, которые бы оказывали компоненты смеси, если бы каждый из них занимал объем, равный объему смеси при той же температуре.

Уравнение Клапейрона - Менделеева. Из законов идеального газа можно получить уравнение состояния , связывающее Т, р и V идеального газа в состоянии равновесия. Это уравнение впервые было получено французским физиком и инженером Б. Клапейроном и российским учеными Д.И. Менделеевым, поэтому носит их имя.

Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре Т 1 . Эта же масса газа в другом состоянии характеризуется параметрами V 2 , p 2 , Т 2 (см. рисунок). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: изотермического (1 - 1") и изохорического (1" - 2).

Для данных процессов можно записать законы Бойля - Мариотта и Гей - Люссака:

Исключив из уравнений p 1 " , получим

Так как состояния 1 и 2 были выбраны произвольно, то последнее уравнение можно записать в виде:

Это уравнение называется уравнением Клапейрона , в котором В - постоянная, различная для различных масс газов.

Менделеев объединил уравнение Клапейрона с законом Авогадро. Согласно закону Авогадро, 1 моль любого идеального газа при одинаковых p и T занимает один и тот же объем V m , поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется универсальной газовой постоянной . Тогда

Это уравнение и является уравнением состояния идеального газа , которое также носит название уравнение Клапейрона - Менделеева .

Числовое значение универсальной газовой постоянной можно определить, подставив в уравнение Клапейрона - Менделеева значения p, T и V m при нормальных условиях:

Уравнение Клапейрона - Менделеева можно записать для любой массы газа. Для этого вспомним, что объем газа массы m связан с объемом одного моля формулой V=(m/M)V m , где М - молярная масса газа . Тогда уравнение Клапейрона - Менделеева для газа массой m будет иметь вид:

где - число молей.

Часто уравнение состояния идеального газа записывают через постоянную Больцмана:

Исходя из этого, уравнение состояния можно представить как

где - концентрация молекул. Из последнего уравнения видно, что давление идеального газа прямо пропорционально его температуре и концентрации молекул.

Небольшая демонстрация законов идеального газа. После нажатие кнопки "Начнем" Вы увидите комментарии ведущего к происходящему на экране (черный цвет) и описание действий компьютера после нажатия Вами кнопки "Далее" (коричневый цвет). Когда компьютер "занят" (т.е. идет опыт) эта кнопка не активна. Переходите к следующему кадру, лишь осмыслив результат, полученный в текущем опыте. (Если Ваше восприятие не совпадает с комментариями ведущего, напишите!)

Вы можете убедиться в справедливости законов идеального газа на имеющейся

; в которой пренебрегают размерами частиц газа, не учитывают силы взаимодействия между частицами газа, предполагая, что средняя кинетическая энергия частиц много больше энергии их взаимодействия, и считают, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

Существуют модель классического идеального газа, свойства которого описываются законами классической физики, и модель квантового идеального газа, подчиняющегося законам квантовой механики. Обе модели идеального газа справедливы для реальных классических и квантовых газов при достаточно высоких температурах и разряжениях.

В модели классического идеального газа газ рассматривают как совокупность огромного числа одинаковых частиц (молекул), размеры которых пренебрежимо малы. Газ заключен в сосуд, и в состоянии теплового равновесия никаких макроскопических движений в нем не происходит. Т. е. это газ, энергия взаимодействия между молекулами которого значительно меньше их кинетической энергии, а суммарный объем всех молекул значительно меньше объема сосуда. Молекулы движутся по законам классической механики независимо друг от друга, и взаимодействуют между собой только во время столкновений, которые носят характер упругого удара. Давление идеального газа на стенку сосуда равно сумме импульсов, переданных за единицу времени отдельными частицами при столкновениях со стенкой, а энергия - сумме энергий отдельных частиц.

Состояние идеального газа характеризуют три макроскопические величины: P - давление, V - объем, Т - температура. На основе модели идеального газа были теоретически выведены ранее установленные опытным путем экспериментальные законы (закон Бойля- Мариотта , закон Гей-Люссака , закон Шарля , закон Авогадро). Эта модель легла в основу молекулярно-кинетических представлений (см. Кинетическая теория газов).

Установленная опытным путем связь между давлением, объемом и температурой газа приближенно описывается уравнением Клапейрона , которое выполняется тем точнее, чем ближе газ по свойствам к идеальному. Классический идеальный газ подчиняется уравнению состояния Клапейрона p = nkT , где р - давление, n - число частиц в единице объема, k - постоянная Больцмана , Т - абсолютная температура. Уравнение состояния и закон Авогадро впервые связали макрохарактеристики газа - давление, температуру, массу - с массой его молекулы.

В идеальном газе, где молекулы не взаимодействуют между собой, энергия всего газа является суммой энергий отдельных молекул и для одного моля одноатомного газа эта энергия U =3/2(RT) , где R - универсальная газовая постоянная . Эта величина не связана с движением газа как целого и является внутренней энергией газа. Для неидеального газа внутренняя энергия представляет сбой сумму энергий отдельных молекул и энергии их взаимодействия.

Частицы классического идеального газа распределены по энергиям согласно распределению Больцмана (см. Больцмана статистика).

Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным, а также при низких давлениях и высоких температурах реальные газы близки по свойствам к идеальному газу.

В современной физике понятие идеальный газ применяют для описания любых слабовзаимодействующих частиц и квазичастиц, бозонов и фермионов . Внеся поправки, учитывающие собственный объем молекул газа и действующие межмолекулярные силы, можно перейти к теории реальных газов.

При понижении температуры Т газа или увеличении его плотности n до определенного значения становятся существенными волновые (квантовые) свойства частиц идеального газа. Переход от классического идеального газа к квантовому происходит при таких значениях Т и n , при которых длины Волн де Бройля частиц, движущихся со скоростями порядка тепловых, сравнимы с расстоянием между частицами.

В квантовом случае различают два вида идеального газа: если частицы газа одного вида имеют спин, равный единице, то к ним применяют статистику Бозе - Эйнштейна , если частицы имеют спин, равный Ѕ , то применяют статистику Ферми - Дирака . Применение теории идеального газа Ферми - Дирака к электронам в металлах позволяет объяснить многие свойства металлического состояния.

Удовлетворяющий следующим условиям:

1) собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

2. Какими параметрами характеризуется состояние газа? Дайте молекулярно-кинетическое толкование параметров р,Т.

Состояние данной массы газа m характеризуют параметры: давление p, объём V, температура T.

3. Запишите формулу, связывающую температуры по шкале Кельвина и по шкале Цельсия? Каков физический смысл абсолютного нуля?

Связь между термодинамической температурой T и температурой по стоградусной шкале Цельсия имеет вид T = t + 273,15. При абсолютном нуле энергия молекул равна нулю.

4. Запишите уравнение состояния идеального газа.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона - Менделеева) - формула, устанавливающая зависимость между давлением , молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: , где p - давление, Vμ - молярный объём, T - абсолютная температура, R - универсальная газовая постоянная.

5. Какой процесс называется изотермическим? Запишите и сформулируйте закон Бойля-Мариотта и начертите график зависимости давления от объема.

Для данной массы газа при постоянной температуре произведение давления газа на его объём есть величина постоянная , при . Процесс, протекающий при постоянной температуре , называется изотермическим.

6. Какой процесс называется изохорическим? Запишите и сформулируйте закон Шарля. Начертите график зависимости давления от температуры.

Давление данной массы газа при постоянном объёме изменяется линейно с температурой , при .

Процесс, протекающий при постоянном объёме, называется изохорным.

7. Какой процесс называется изобарическим? Запишите и сформулируйте закон Гей-Люссака. Начертите график зависимости объема от температуры.

Объём данной массы газа при постоянном давлении изменяется линейно с температурой: , при . Процесс, протекающий при постоянном давлении, называется изобарным.

8. Какой процесс называется адиабатическим? Запишите уравнение Пуассона и представьте его графически. (см. приложение № 2)

Адиабатический процесс – это процесс, протекающий без теплообмена с окружающей средой , следовательно .

Работа в ходе адиабатического расширения осуществляется за счет убыли внутренней энергии.

Уравнение Пуассона , где - показатель адиабаты.

9. Запишите и сформулируйте первый закон термодинамики. Дайте понятие внутренней энергии , работы, количества тепла.

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил.

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа , которым осуществляется этот переход.

10. Запишите выражение для работы расширения газа. Как ее представить графически на рV диаграмме.

11. Примените первый закон термодинамики ко всем процессам, рассматриваемым в данной лабораторной работе и проанализируйте вытекающие из него следствия.
12. Дайте определение удельной и молярной теплоемкостей и запишите соотношение между ними.

Удельная теплоёмкость вещества – величина равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К .

С=сM.
13. Выведите уравнение Майера. Какая из теплоемкостей С P или C V больше и почему?

Связь между молярными и теплоёмкостями (уравнения Майера) .

Связь между удельными теплоёмкостями

14. Что понимают под числом степеней свободы? Запишите связь между γ и числом степеней свободы i.

Степеней свободы число в механике, число независимых между собой возможных перемещений механической системы. Число степеней свободы зависит от числа материальных частиц , образующих систему, и числа и характера наложенных на систему механических связей. Для свободной частицы число степеней свободы равно 3, для свободного твёрдого тела - 6, для тела, имеющего неподвижную ось вращения , число степеней свободы равно 1 и т.д. Для любой голономной системы (системы с геометрическими связями) число степеней свободы равно числу s независимых между собой координат, определяющих положение системы, и даётся равенством 5 = 3n - к, где n

16. Нарисуйте и поясните на рV диаграмме последовательно все процессы, происходящие с газом.

17. Какова причина изменения температуры воздуха в баллоне при накачивании воздуха в баллон и при выпуске его из баллона?

18. Выведите расчетную формулу для определения отношения теплоемкостей γ.

19. Расскажите порядок выполнения работы.