Строение микроскопа и для чего он нужен. Строение микроскопа

РАСТИТЕЛЬНАЯ КЛЕТКА

Клетка - функциональная и структурная единица живого организма.

Устройство микроскопа

Микроскоп служит для увеличения и рассматривания мелких предметов, не видимых простым глазом. Он необходим при изучении анатомического строения растений (рис.1). В микроскопе можно выделить три части:

1.Оптическая (объектив, окуляр, диафрагма, конденсор).

2.Механическая (тубус, тубусодержатель, предметный столик, револьвер, макро- и микрометрические винты, подставка).

3.Осветительная (зеркало).

Рис.1. Строение микроскопа

Объектив наиболее важная часть микроскопа, представляет собой систему линз, заключенных в металлическую оправу. Микроскоп снабжен несколькими объективами с разным увеличением (10X,40X,80X).

Зеркало имеет две поверхности, одна плоская, другая вогнутая. При работе с микроскопом пользуются вогнутым зеркалом.

Конденсор состоит из двух или трех линз в металлическом цилиндре. С помощью специального винта конденсор можно поднимать или опускать, при этом освещение будет усиливаться или ослабляться. Между зеркалом и конденсором располагается диафрагма, с помощью которой регулируется освещение и резкость изображения.

Макрометрический винт нужен для грубой наводки (фокусировки) изображения.

Микрометрический винт необходим для перемещения тубуса на малые расстояния.

Предметный столик служит для расположения на нем микропрепарата. На столике имеются два зажима для закрепления препарата.

Правила работы с микроскопом

1.Микроскоп следует брать за дугообразно изогнутую часть тубусодержателя.

2.Микроскоп ставят на стол таким образом, чтобы дугообразный тубусодержатель был обращен к себе, зеркало и предметный столик от себя.

3.Установленный в начале работы микроскоп нельзя перемещать с места на место, так как нарушаются условия освещения.

4.Тетрадь и все необходимые для работы предметы располагаются справа от микроскопа.

5.Освещение микроскопа производится при малом увеличении (8X) зеркалом вогнутой стороной. Глядя сбоку на зеркало, направляем его к источнику света. Затем левым глазом (правый глаз всегда открыт) смотрим в окуляр и добиваемся максимального освещения.

6.Готовый микропрепарат выкладываем на предметный столик, закрепляем зажимами.

7.Глядя сбоку на объектив 8X, с помощью макрометрического винта опускаем объектив на расстояние меньше 1 см от препарата. Затем, глядя в окуляр, тем же макровинтом поворачиваем его к себе до четкого изображения (фокусное расстояние). Фокусное расстояние- это расстояние от рассматриваемого объекта до линзы объектива. При малом увеличении оно равно 1 см.

8.Для рассматривания препарата при большом увеличении (40X) необходимо сменить объектив с помощью револьвера, поворачиваем его до щелчка. Устанавливается фокусное расстояние так же, как и при малом увеличении. Фокусное расстояние при большом увеличении равно 1 мм.

9.После зарисовки препарата при большом увеличении поверните револьвер и установите малое увеличение. Затем снимите препарат. Макровинт опустите вниз- это не рабочее состояние микроскопа.

10.Уберите микроскоп в шкаф, защищающий его от механических повреждений и пыли (рис.2).

Рис.2. Работа с микроскопом

Конструкция микроскопа непосредственно зависит от его назначения. Как Вы уже, наверное, догадались, микроскопы бывают разные, и оптический микроскоп будет значительно отличаться от электронного или рентгеновского. В данной статье будет подробно разбираться строение оптического светового микроскопа , который на данный момент является наиболее популярным выбором любителей и профессионалов, и с помощью которого можно решить множество исследовательских задач.

Оптические микроскопы также имеют свою классификацию и могут различаться по своему строению. Тем не менее, существует основной набор деталей, которые входят в устройство любого оптического микроскопа. Давайте рассмотрим каждую из этих деталей.

В микроскопе можно выделить оптическую и механическую части. Оптика микроскопа включает в себя объективы, окуляры, а также осветительную систему. Штатив, тубус, предметный столик, крепления конденсора и светофильтров, механизмы для регулировки предметного столика и тубусодержателя составляют механическую часть микроскопа.

Начнем, пожалуй, с оптической части .

  • Окуляр . Та часть оптической системы, которая непосредственно связана с глазами наблюдателя. В простейшем случае объектив состоит из одной линзы. Иногда для большего удобства, или, как принято говорить, "эргономичности", объектив может быть снабжен, например, "наглазником" из резины либо мягкого пластика. В стереоскопических (бинокулярных) микроскопах имеется два окуляра.
  • Объектив . Едва ли не самая важная часть микроскопа, обеспечивающая основное увеличение. Основной параметр - аппертура, о том, что это такое, подробно рассказано в разделе "Основные параметры микроскопов". Объективы делятся на "сухие" и "иммерсионные", ахроматические и апохроматические, и даже в дешевых простых микроскопах представляют собой довольно сложную систему линз. Некоторые микроскопы имеют унифицированные элементы крепления объективов, что позволяет комплектовать прибор в соответствии с задачами и бюджетом потребителя.
  • Осветитель . Очень часто используется обыкновенное зеркало, позволяющее направлять на исследуемый образец дневной свет. В настоящее время часто применяют специальные галогенные лампы, имеющие спектр, близкий к естественному белому свету и не вызывающие грубых искажений цвета.
  • Диафрагма . В основном в микроскопах применяют так называемые "ирисовые" диафрагмы, названные так потому, что содержат лепестки, подобные лепесткам цветка ириса. Сдвигая или раздвигая лепестки, можно плавно регулировать силу светового потока, поступающего не исследуемый образец.
  • Коллектор . С помощью коллектора, расположенного вблизи светового источника, создается световой поток, который заполняет апертуру конденсора.
  • Конденсор . Данный элемент, представляющий собой собирающую линзу, формирует световой конус, направленный на объект. Интенсивность освещения при этом регулируется диафрагмой. Чаще всего в микроскопах используется стандартный двухлинзовый конденсор Аббе.

Стоит отметить , что в оптическом микроскопе может быть использован один из двух основных способов освещения: освещение проходящего света и освещение отраженного света. В первом случае световой поток проходит через объект, в результате чего формируется изображение. Во втором - свет отражается от поверхности объекта.

Что касается оптической системы в целом, то в зависимости от ее строения принято выделять прямые микроскопы (объективы, насадка, окуляры располагаются над объектом), инвертированные микроскопы (вся оптическая система располагается под объектом), стереоскопические микроскопы (бинокулярные микроскопы, состоящие по сути из двух микроскопов, расположенных под углом друг к другу и формирующие объемное изображение).

Теперь перейдем к механической части микроскопа .

  • Тубус . Тубус представляет собой трубку, в которую заключается окуляр. Тубус должен быть достаточно прочным, не должен деформироваться, что ухудшит оптические свойства, потому только в самых дешевых моделях тубус делается из пластмассы, чаще же используются алюминий, нержавеющая сталь либо специальные сплавы. Для ликвидации "бликов" тубус внутри, как правило, покрывается черной светопоглощающей краской.
  • Основание . Обычно выполняется достаточно массивным, из металлического литья, для обеспечения устойчивости микроскопа во время работы. На данном основании крепится тубусодержатель, тубус, держатель конденсора, ручки фокусировки, револьверное устройство и насадка с окулярами.
  • Револьверная головка для быстрой смены объективов. Как правило, в дешевых моделях, имеющих всего один объектив, этот элемент отсутствует. Наличие револьверной головки позволяет оперативно регулировать увеличение, меняя объективы простым ее поворотом.
  • Предметный столик , на котором размещают исследуемые образцы. Это либо тонкие срезы на предметных стеклах - для микроскопов, работающих в "проходящем свете", либо объемные объекты для микроскопов "отраженного света".
  • Крепления , которыми предметные стекла фиксируются на предметном столике.
  • Винт грубой настройки фокусировки . Позволяет, изменяя расстояние от объектива до исследуемого образца, добиваться наиболее четкого изображения.
  • Винт точной фокусировки . То же самое, только с меньшим шагом и меньшим "ходом" резьбы для максимально точной регулировки.

Устройство микроскопа

Наименование параметра Значение
Тема статьи: Устройство микроскопа
Рубрика (тематическая категория) История

Из истории микроскопа

CoolReferat.com

В рассказе Василия Шукшина ʼʼМикроскопʼʼ деревенский столяр Андрей Ерин купил на ʼʼзаныкануюʼʼ от жены зарплату мечту всœей своей жизни – микроскоп – и поставил своей целью найти способ извести на земле всœех микробов, поскольку искренне считал, что, не будь их, человек мог бы жить более ста пятидесяти лет. И только досадное недоразумение помешало ему в данном благородном делœе. Для людей многих профессий микроскоп - это крайне важно е оборудование, без которого выполнение многих исследований и технологических операций просто невозможно. Ну а в ʼʼдомашнихʼʼ условиях данный оптический прибор позволяет всœем желающим расширить границы своих возможностей, заглянув в ʼʼмикрокосмосʼʼ и исследовав его обитателœей.

Первый микроскоп был сконструирован отнюдь не профессиональным ученым, а ʼʼлюбителœемʼʼ, торговцем мануфактурой Антони Ван Левенгуком, жившим в Голландии в XVII веке. Именно данный пытливый самоучка первым взглянул через сделанный им самим прибор на капельку воды и увидел тысячи мельчайших существ, названных им латинским словом animalculus (ʼʼмаленькие звериʼʼ). За свою жизнь Левенгук успел описать более двухсот видов ʼʼзверушекʼʼ, а изучая тонкие срезы мяса, фруктов и овощей, он открыл клеточную структуру живой ткани. За заслуги перед наукой Левенгук в 1680 году был избран действительным членом Королевского общества, а чуть позже стал академиком и Французской Академии наук.

Микроскопы Левенгука, которых за свою жизнь он собственноручно изготовил более трех сотен, представляли собой небольшую, величиной с горошину, сферическую линзу, вставленную в оправу. Микроскопы имели предметный столик, положение которого относительно линзы можно было настраивать с помощью винта͵ а вот подставки или штатива у этих оптических приборов не было – их нужно было держать в руках. С точки зрения сегодняшней оптики, прибор, который принято называть ʼʼмикроскопом Левенгукаʼʼ, является не микроскопом, а очень сильной лупой, поскольку его оптическая часть состоит только из одной линзы.

С течением времени устройство микроскопа заметно эволюционировало, появились микроскопы нового типа, были усовершенствованы методы исследования. При этом работа с любительским микроскопом и по сей день сулит немало интересных открытий и взрослым, и детям.

Микроскоп - ϶ᴛᴏ оптический прибор, предназначенный для исследования увеличенных изображений микрообъектов, которые невидны невооруженным глазом.

Основными частями светового микроскопа (рис. 1) являются объектив и окуляр, заключенные в цилиндрический корпус – тубус. Большинство моделœей, предназначенных для биологических исследований, имеют в комплекте три объектива с разными фокусными расстояниями и поворотный механизм, предназначенный для их быстрой смены – турель, часто называемую револьверной головкой. Тубус располагается на верхней части массивного штатива, включающего тубусодержатель. Чуть ниже объектива (или турели с несколькими объективами) находится предметный столик, на который устанавливаются предметные стекла с исследуемыми образцами. Резкость регулируется с помощью винта грубой и точной настройки, который позволяет изменять положение предметного столика относительно объектива.

Для того чтобы исследуемый образец имел достаточную для комфортного наблюдения яркость, микроскопы снабжаются еще двумя оптическими блоками (рис. 2) – осветителœем и конденсором. Осветитель создает поток света͵ освещающий исследуемый препарат. В классических световых микроскопах конструкция осветителя (встроенного или внешнего) предполагает низковольтную лампу с толстой нитью накала, собирающую линзу и диафрагму, изменяющую диаметр светового пятна на образце. Конденсор, представляющий собой собирающую линзу, предназначен для фокусировки лучей осветителя на образце. Конденсор также имеет ирисовую диафрагму (полевую и апертурную), с помощью которой регулируется интенсивность освещения.

При работе с пропускающими свет объектами (жидкостями, тонкими срезами растений и т. п.), их освещают проходящим светом – осветитель и конденсор располагаются под предметным столиком. Непрозрачные же образцы нужно освещать спереди. Для этого осветитель располагают над предметным столиком, и его лучи с помощью полупрозрачного зеркала направляются на объект через объектив.

Осветитель должна быть пассивным, активным (лампа) или состоять из обоих элементов. Самые простые микроскопы не имеют ламп для подсветки образцов. Под столиком у них располагается двустороннее зеркало, у которого одна сторона плоская, а другая – вогнутая. При дневном освещении, в случае если микроскоп стоит у окна, получить довольно неплохое освещение можно при помощи вогнутого зеркала. В случае если же микроскоп находится в темном помещении, для подсветки используются плоское зеркало и внешний осветитель.

Увеличение микроскопа равно произведению увеличения объектива и окуляра. При увеличении окуляра равном 10 и увеличении объектива равном 40 общий коэффициент увеличения равен 400. Обычно в комплект исследовательского микроскопа входят объективы с увеличением от 4 до 100. Типичный комплект объективов микроскопа для любительских и учебных исследований (х 4, х10 и х 40), обеспечивает увеличение от 40 до 400.

Разрешающая способность – другая важнейшая характеристика микроскопа, определяющая его качество и четкость формируемого им изображения. Чем больше разрешающая способность, тем больше мелких деталей можно рассмотреть при сильном увеличении. В связи с разрешающей способностью говорят о ʼʼполезномʼʼ и ʼʼбесполезномʼʼ увеличении. ʼʼПолезнымʼʼ принято называть предельное увеличение, при котором обеспечивается максимальная деталировка изображения. Дальнейшее увеличение (ʼʼбесполезноеʼʼ) не поддерживается разрешающей способностью микроскопа и не выявляет новых деталей, зато может негативно повлиять на четкость и контраст изображения. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, предел полезного увеличения светового микроскопа ограничивается не общим коэффициентом увеличения объектива и окуляра - его при желании можно сделать сколь угодно большим, - а качеством оптических компонентов микроскопа, то есть, разрешающей способностью.

Микроскоп включает в себя три основные функциональные части:

1. Осветительная часть Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах и перед объектом над объективом в инвертированных. Осветительная часть включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

2. Воспроизводящая часть Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (ᴛ.ᴇ. для построения такого изображения, ĸᴏᴛᴏᴩᴏᴇ как можно точнее и во всœех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей). Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа. Воспроизводящая часть включает объектив и промежуточную оптическую систему. Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света͵ выходящие из объектива, ʼʼсобираютʼʼ в плоскости изображения микроскопа.

3. Визуализирующая часть Предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телœевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).

Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (камерой, фотокамерой). Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системой (окулярами, которые работают как лупа). Вместе с тем, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в т.ч. дискуссионные для двух и более наблюдателœей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими согласующими элементами (фотоканал).

Устройство микроскопа - понятие и виды. Классификация и особенности категории "Устройство микроскопа" 2017, 2018.

Изучение морфологических признаков микробов - их формы, строения и величины клеток, способности к движению и пр. - производится с помощью оптического прибора - микроскопа (от греческого «микрос» - малый, «скопео» - смотрю). Из выпускаемых биологических микроскопов лучшими являются МБИ-1, МБИ-2, МБИ-3, МБР-1 и некоторые другие.

Основные части микроскопа: оптическая система (объектив и окуляр), осветительная оптическая система (конденсор и зеркало) и механическая часть. Оптическая система создает увеличенное изображение объекта. Механическая часть обеспечивает перемещение оптической системы и наблюдаемого объекта (предмета). Основными частями механической системы микроскопа (рис. 60) являются: штатив, предметный столик, тубусодержатель с револьвером и винты для передвижения тубуса - макрометрический и микрометрический.

Макрометрический винт (кремальера, или зубчатка) служит для грубой наводки микроскопа. Микрометрический винт является механизмом тонкой подачи и служит для окончательной, точной фокусировки микроскопа на препарат. Полный оборот микровинта передвигает тубус микроскопа на 0,1 мм. Микрометрический винт является одной из наиболее хрупких частей микроскопа, и обращаться с ним нужно особенно осторожно. Наиболее четкое и ясное изображение получают передвижением тубуса с помощью макро- и микрометрического винтов при соответствующей настройке освещения. Тубус микроскопа закреплен в верхней части штатива в тубусодержателе. Предметный столик также укреплен в верхней части штатива. У современных микроскопов предметный столик почти всегда делается подвижным. Он приводится в движение двумя винтами, расположенными по обе стороны столика. При помощи этих винтов препарат вместе со столиком передвигается в разных направлениях, что в значительной степени облегчает рассмотрение препарата в различных его точках. Закрепление препарата на столике производится двумя клеммами (зажимами).

Кроме подвижных столиков, некоторые микроскопы снабжаются крестообразными столиками. Препараты в этом случае перемещают в двух взаимно перпендикулярных направлениях. Две шкалы на столике позволяют отмечать интересующие исследователя участки препарата, с тем чтобы их можно было легко отыскать при повторном микроскопировании.

В нижней части тубусодержателя находится револьвер с отверстиями, снабженными нарезкой. В эти отверстия ввинчиваются объективы. Объективы составляют наиболее важную и дорогую часть микроскопа. Это сложная система двояковыпуклых линз, заключенных в металлическую оправу. Объективы увеличивают рассматриваемый предмет, давая действительное увеличенное обратное изображение.

Все объективы делятся на ахроматы и апохроматы. Ахроматы более распространены вследствие своей простоты и дешевизны. В них имеется шесть линз, изготовленных из оптического стекла. Изображение, получаемое с помощью ахроматов, наиболее резкое в центре. Края поля вследствие хроматической аберрации часто бывают окрашены в синий, желтый, зеленый, красный и другие цвета. Апохроматы состоят из большего числа линз (до 10). Для их изготовления употребляется стекло различного химического состава: борное, фосфорное, флюорит, квасцы. В апохроматах в значительной степени устранена хроматическая аберрация.

Обычно микроскопы снабжаются тремя объективами, на которых указывается даваемое ими увеличение: объективы 8Х (малое увеличение), 40Х (среднее увеличение) и 90Х (большое увеличение). Объективы 8Х и 40X являются сухими системами, так как при работе с ними между препаратом и объективом находится слой воздуха. Лучи света, проходя сквозь среды различной плотности (показатель преломления воздуха п=1, стекла п=1,52) и попадая из среды более плотной (стекло) в менее плотную (воздух), сильно отклоняются и не полностью попадают в объектив микроскопа. Поэтому сухими объективами можно пользоваться только при сравнительно небольших увеличениях (до 500-600 раз).

Чем больше увеличение, тем меньшего диаметра должны быть линзы. Поэтому при больших увеличениях слишком малая часть лучей попадает в линзу объектива и изображение получается недостаточно отчетливое. Во избежание этого прибегают к иммерсии (погружению) объектива в среду, имеющую коэффициент преломления, близкий к коэффициенту преломления стекла. Таким иммерсионным, или погружаемым, объективом в биологических микроскопах является объектив 90X. При работе между этим, объективом ц предметным стеклом помещают каплю иммерсионного (чаще всего кедрового) масла, коэффициент преломления которого равен 1,51. Объектив погружают непосредственно в масло, световые лучи проходят через однородную систему не преломляясь и не рассеиваясь, что способствует получению четкого изображения рассматриваемого объекта.

В верхнюю часть тубуса микроскопа вставляется окуляр. Окуляр состоит из двух собирающих линз: одной, обращенной к объективу, и второй, обращенной к глазу. Между ними в окуляре имеется диафрагма, которая задерживает боковые лучи и пропускает лучи, параллельные оптической оси. Это обеспечивает более контрастное промежуточное изображение. Глазная линза окуляра увеличивает изображение, полученное от объектива. Окуляры изготовляются с собственным увеличением в 7Х, 10Х, 15Х раз. Общее увеличение микроскопа равняется произведению увеличения объектива на увеличение окуляра. При комбинировании окуляров с объективами можно получить различные увеличения - от 56 до 1350 раз.

Конденсор представляет собой двояковыпуклую линзу, которая собирает отраженный от зеркала свет в пучок и направляет его в плоскость препарата, что обеспечивает наилучшее освещение объекта. Поднятием и опусканием конденсора можно регулировать степень освещенности препарата. В нижней части конденсора расположена ирис-диафрагма, посредством которой также можно менять яркость освещения, суживая или, наоборот, полностью раскрывая ее.

Зеркало, имеющее две отражающие поверхности - плоскую и вогнутую, укреплено на качающемся рычажке, при помощи которого его можно устанавливать в любой плоскости. Вогнутой стороной зеркала пользуются редко - при работе со слабыми объективами. Зеркало отражает световые лучи и направляет их в объектив через ирис-диафрагму конденсора, конденсор и рассматриваемый объект. В нижней части оправы конденсора имеется откидная рамка, которая служит для установки светофильтров.

Микроскоп - сложный оптический прибор, он требует осторожного и бережного обращения, соответствующих навыков в работе. Надлежащий уход за прибором и тщательное соблюдение правил пользования гарантируют безупречность и долговременность его службы. Качество изображения в микроскопе в значительной степени зависит от освещения, поэтому настройка освещения является важной подготовительной операцией.

Работа с микроскопом может проводиться как при естественном, так и при искусственном освещении. При ответственных работах пользуются искусственным освещением, применяя осветитель ОИ-19. При естественном освещении нужно пользоваться рассеянным боковым, а не прямым солнечным светом.

Современные микроскопы МБИ-2, МБИ-3 снабжаются бинокулярными насадками типа АУ-12, имеющими собственное увеличение 1,5х, и прямым сменным тубусом (рис. 61). При использовании бинокулярной насадки микроскопирование облегчается, так как наблюдение производится обоими глазами и зрение не утомляется.

1-тема. Световые микроскопы, строение и правила

работы с ними

Содержание темы.

Одним из основных методов изучения мелких биологических объектов (вирусов, микроорганизмов, простейших, клеток, многоклеточных) является микроскопирование – изучение их с помощью оптических увеличивающих приборов (micros – малый, scopio - наблюдать). Существуют разные виды микроскопов (световой, электронный, люминесценный, фазовоконстрастный, флуоресцентный, поляризационный и др). Чаще используются световые микроскопы, которые необходимы не только для биологических но и медицинских исследований, например для лабораторной диагностики болезней. Поэтому каждый студент обязан знать строение световых микроскопов и уметь работать с ними.

Световой микроскоп состоит из следующих частей: а) оптическая, б) механическая, в) осветительная . (Рис.1; табл.1.).

К механической части относятся: штатив, предметный столик, тубус револьвер, макро и микрометрические винты. Штатив состоит из основания, тубусодержателя и тубуса. Предметный столик имеет в центре круглое отверстие, через которое проходит пучок света, две клеммы для фиксации препарата, препаратоводители-винты для передвижения верхней части столика по горизонтальной плоскости. Ниже предметного столика расположены макрометрический и микрометрический винты. Макрометрический винт крупнее и служит для ориентировочного фокусирования, а микрометрический - для более точного. В большинство микроскопов микровинт имеет вид массивного диска и распологается на основании.

Осветительная часть состоит из зеркала, конденсора и диафрагмы.

Зеркало подвижно укреплено на штативе ниже предметного столика, его можно вращать в любом направлении. Зеркало имеет вогнутую и плоскую поверхность. При слабом освещении используется вогнутая поверхность. Конденсор также располагается под предметным столиком и состоит из системы линз. Имеется специальный винт для перемещения конденсора вверх или вниз,

Рис-1. Микроскоп МБР-I.

1-основание (штатив); 2-тубусодержатель; 3-тубус; 4-предметный столик; 5-отверстие предметного столика; 6-винты,перемещающие столик; 7-окуляр; 8-объектив;

9-макрометрический винт; 10-микромерический винт; 11-конденсор; 12-винт конденсора; 13-дафрагма; 14-зеркало; 15-револьвер.

Таблица-1

Строение микроскопа

Предметный столик

I.Механическая часть Тубус

Револьвер

Макро и микрометрический винты

Световой II.Осветительная Зеркало

микроскоп часть Конденсор

Ирисовая диафрагма

Объектив малого увеличения (8 х)

III.Оптическая часть Объектив большого увеличения (40 х)

Иммерсионный объектив (90 х)

с помощью которого регулируется степень освещения. При опускании конденсора освещение уменьшается, при поднимании - увеличивается.

Ирисовая диафрагма ввинчена в нижнюю часть конденсора, состоит из мелких пластинок. С помощью специальной клеммы можно регулировать диаметр отверстия и освещенность изучаемого объекта.

К оптической части микроскопа относятся окуляры и объективы. Окуляры состоят из системы линз. Увеличительная способность окуляра указана на верхней поверхности (7, 10, 15, 20)

Объективы ввинчиваются в специальные гнёзда револьвера. Вращающийся револьвер имеет 4 гнёзда для объективов. Объективы также имеют различную кратность увеличения (8 х, 40 х, 60 х, 90 х) по увеличительной способности можно судить о «силе микроскопа» При расчете силы микроскопа следует умножить увеличение окуляра на увеличение объектива (например, 10 х 8=56 , 10 х 40 =400, 10 х 90=900 и т.д.)

Для характеристики оптических приборов часто употребляется понятие «разрешающая способность». Разрешающая способность микроскопа – это наименьшее расстояние между двумя точечеыми объектами, при котором их можно различить. Глаз человека (своеобразный оптический прибор) может различить две точки, удаленные от него на 25 см, при рассоянии между ними не меньше 0,073мм. Разрешающая способность светового микроскопа- 0,2мкм,электронного микроскопа -5А 0 (1 Ангстрем =
мкм)

Правила работы с микроскопом.

1.Микроскоп устанавливается штативом к себе, на расстоянии 5см от края стола.

2.Окуляр,объектив, зеркало и другие части микроскопа протираются мягкой суконкой.

3.Спомощью револьвер объектив малого увеличения устанавливается в центре предметного столика, при этом слышится легкий щелчок и револьвер фиксируется.

Необходимо надо помнить что изучение любого объекта начинается с малого увеличения .

4.С помощью макрометрического винта объектив малого увеличения поднимается на высоту 0.5см от предметного столика.

5.Глядя на окуляр левым глазом и вращая зеркало в разных направлениях устанавливается яркое и равномерное освещение поля зрения. Для этого следует расширить отверстие диаграммы и поднять конденсор. При достаточной освещенности используется плоская поверхность зеркала.

6.Изучаемый препарат устанавливается в центре предметного столика и закрепляется клеммами. С помощью макровинта малый объектив медленно опускается до расстояния примерно 2 мм от препарата. Затем, глядя в окуляр левым глазом, медленно вращая макрометрический винт, малый объектив поднимается до появления в поле зрения изображения изучаемого объекта. Фокусное расстояния объектива с малым увеличением составляет 0.5см. При появлении четкого изображения препарата в нужном участке эта часть устанавливается в центре поля зрения. Затем устанавливается объектив большого увеличения. Под контролем зрения объектив опускается почти до соприкоснования с препаратом. После этого, глядя в окуляр, медленно поднимается до появления четкого изображения. Фокусное расстояние при работе с объективом большого увеличения равно 1мм. При отсутствии изображения следует повторить работу сначала. Для тонкой фокусировки используются микрометрический винт, вращая его вправо и влево в полоборота.

Объясните понятие «сила микроскопа, разрешающая способность микроскопа».

7.Объектив с увеличением 90 х называются иммерсионным (от лат. Immersio-погружать). Этот объектив используется при изучении мельчайших объектов. При использовании этого объектива на изучаемый объект помещают каплю иммерсионного (кедрового) масла. Затем, глядя с боку, тубус опускаются до погружения линзы объектива в масло. После этого, глядя в окуляр, пользуясь только микровинтом, объектив осторожно опускается или поднимается до получения четкого изображения.

8.После завершения работы следует перевести микроскоп в нерабочее положение. Для этого, вращая револьвер, объективы переводятся в нейтральное положение.

Цель занятия.

Ознакомление со строением микроскопа, освоение правил работы с ним, техники приготовления временных препаратов, изучение временных и постоянных микропрепаратов.

Задание для самостоятельной подготовки.

I.Изучить материал по теме и ответить на следующие вопросы:

1.Значение микроскопических исследований в биологии и медицине.

2.Какие существует типы микроскопов?

3.Укажите основные части микроскопа.

4.Изучите правила работы с микроскопом.

5.Используя дополнительную литературу расскажите о принципах работы разных микроскопов.

II Решить ситуационные задачи и ответить на тестовые вопросы.

Учебное оборудование.

Микроскопы, чашки Петри, предметные и покровные стекла, пипетки стаканы с водой, пинцеты,ножницы,вата, иммерсионное масло,постоянные микропрепараты, таблицы с изображением строения микроскопа, различные клетки и ткани

План занятия.

Студенты изучают устройство микроскопа и правила работы с ними,осваивают технику приготовления временных препаратов.


  1. препарат. Часть волоса длиной примерно 1-1,5см кладут на предметное стекло и капают из пипетки одну каплю воды, покрывают покровным стеклом. Препарат изучают сначала при малом, затем при большом увеличении микроскопа, зарисовывают изображение в альбом.
2- препарат. Из чашки Петри берут пинцетом небольшой пучок волокон ваты, кладут на предметно стекло, разрыхляют и капают каплю воды, накрывают покровным стеклом. Препарат изучают сначала при малом, затем при большом увеличении, зарисовывают изображение в альбом, обозначают волокна ваты и пузырьки воздуха. В заключительной части занятия преподаватель проверяет альбом, усвоение материала с помощью тестов и ситуационных задач, оценивает успеваемость и объясняет задание на следующее занятие.

Ситуационные задачи.

1.Студент при работе с малым увеличением не смог найти изображение объекта. Перечислите ошибки, допушенные студентом.

2.При переходе на большое увеличение студент не смог найти изображение объекта. Какие ошибки допущены студентом?

3.При микроскопировании студент разбил препарат. Укажите причины.

Тестовые задания.

1.Основные части микроскопа:

А. Механическая. В. Оптическая. С. Осветительная. Д. Объектив и диафрагма.

Е. Все части микроскопа являются основными.

2.Иммерсионный объектив-это:

А. Объектив малого увеличения. В. Объектив большого увеличения.

С. Все объективы считаются иммерсионными.

Д. Объектив с увеличением 90 х при работе с которым используется иммерсионные масло. Е. Все ответы неверны.

3.Принцип работы электронного микроскопа основан:

А. На использовании светового излучения.

В. На использовании потока электронов.

С. На использовании электромагнитных линз.

4. Недостатки постоянных препаратов:

А. Отсутствуют.

В. При фиксации изучаемого объекта происходят незначительные изменения.

С. Отсутствие возможности изучения препарата при большом увеличении.

Д. Верны ответы В и С; Е. Все ответы не верны.

5.С помощью какого микроскопа биологические объекты можно изучить в живом виде?

А. Флуоресцентного микроскопа. В. Фазово-контрастного микроскопа.

С. Электронного микроскопа. Д Верны ответы А и В. Е. Верны все ответы.

6. Как определяется увеличение изучаемого объекта?

А. По цифрам на объективе; В. По цифрам на окуляра;

С. По цифрам на тубусе; Д. Умножением увеличения окуляра на увеличение объектива; Е. Умножением цифры объектива на цифру тубуса.

7. Значение револьвера:

А. Служит для передвижения тубуса; В. Служит для смены объективов.

С. Служит для установления нужного объектива под тубусом.

Д. Верны ответы А и С; Е. Верны ответы В и С.

8.Какими изменениями положения диафрагмы и конденсора можно добиться равномерной и хорошей освещенности объекта.?

А. Опусканием конденсора, сужением отверстия диафрагмы.

В. Поднятием конденсора, сужением отверстия диафрагмы.

С. Поднятием конденсора, расширением отверстия.

Д. Верны ответы А и В. Е. Все ответы неверны.

9. Укажите причины отсуствия изображения объекта при переходе с малого увеличения на большое.

А. Объектив большого увеличения не фиксирован.

В. Изучаемый объект не отцентрирован.

С.Нет фокусного расстояния. Д. Все ответы дополняют друг друга.

Е. Все ответы неверны.

10.С какого объектива начинается изучение объекта?

А. С иммерсионного объектива. В. С объектива большого увеличения.

С Со специального объектива. Д.Можно начинать с любого объектива

Е.С объектива малого увеличения.

2-тема. Строение клетки. Цитоплазма.

Клетка является элементарной структурной, функциональной и генетической единицей живого. Знания о структуре и функции клетки служат фундаментом для освоения морфологических и медико-биологических дисциплин. Врачи в своей практической деятельности используют данные цитологических исследований. По структуре клетки различаются на прокариотические и эукариотические.

К прокариотическим клеткам относятся бактерии и сине-зеленые водоросли. У них отсутствует ядро, вместо которого содержится одна кольцевидная хромосома.

Эукариотические клетки разделяются на простейшие (одноклеточные) и клетки многоклеточные (табл-2). На практических занятиях мы изучаем эукариотические клетки.

Форма клеток зависит от выполняемых функций. Например, сократительная функция мышечных клеток обеспечивается их вытянутый формой, длинные отростки нервных клеток определяют проводимость нервных импульсов.

Размеры клеток широко варьируют (от 2-3микрометров до 100 и более). Яйцеклетки некоторых организмов могут достигать до 10см. Лимфоциты и эритроциты человека относятся к мелким клеткам. Основными структурными компонентами эукриотической клетки являются: клеточная оболочка, цитоплазма и ядро . Клеточная оболочка окружает цитоплазму и отделяет ее от окружающей среды. В состав клеточной оболочки входят плазмолемма, надмембранные органические молекулы и субмембранные органоиды цитоскелета. У растительных клеток (рис.2.) надмембранный толстый слой состоит в основном из целлюлозы. У животных клеток (рис.3.) образуется надмембранный гликокаликс, состоящий из сложных гликопротеинов, толщина которого не превышает 10-20 нм.

Основу плазмолеммы составляет бимолекулярный липидный слой,белковые молекулы по разному погружены в этот липидный слой.

Функции плазмолеммы : защита цитоплазмы от факторов внешней среды, обеспечение транспорта веществ. Рецепторы плазмолеммы обеспечивают ответ клетки на действие гормонов и других биологически активных веществ.

Цитоплазма состоит из гиалоплазмы, органоидов, и включений . Гиалоплазма –матрикс цитоплазмы, сложная, бесцветная коллоидная система. В ней содержатся белки, РНК, липиды, полисахариды. В гиалоплазме обеспечивается транспорт веществ и их взаимодействие, буферные и осмотические свойства клетки.

Таблица-2

ЭУКАРИОТЫ

I.Поверхностный аппарат II.Цитоплазма III.Ядро

(клеточная оболочка)

Поверхностный аппарат

I.Плазмолемма II.Надмембранный комплекс III.Субмембранный

(гиалоплазма) опорно-сократительный

Состав аппарат

(по жидкостно- Состав

Мозаичной модели) а) ферменты

А) фосфолипидный б) гликопротеины а)микрофибриллы

Бислой б)микротрубочки

Б)белки Функции в)скелетные фибриллярные фибриллярные

В)липиды структуры

Г)гетерогенные

Макромолекулы рецепторная внеклеточное

Пищеварение

Участие в адгезии