Ядерный реактор, принцип действия, работа ядерного реактора. Большая энциклопедия нефти и газа

Ядерные реакторы.

Ядерный (атомный) реактор - это устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления атомов, которая сопровождается выделением большого количества энергии.

Ядерные реакторы являются основным элементом современных атомных электростанций.

Первые ядерные реакторы.

Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми.

Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года.

В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.

История создания ядерных реакторов.

Научная работа в Германии.

Теоретическую группу «Урановый проект» нацистской Германии, работающую в Обществе кайзера Вильгельма, возглавлял Вайцзеккер, но лишь формально. Фактическим лидером был Гейзенберг, разрабатывающий теоретические основы цепной реакции, Вайцзеккер же с группой участников сосредоточился на создании «урановой машины» - первого реактора.

Поздней весной 1940 года один из учёных группы - Хартек - провёл первый опыт с попыткой создания цепной реакции, используя оксид урана и твёрдый графитовый замедлитель. Однако имеющегося в наличии делящегося материала не хватило для достижения этой цели.

В 1941 году в Лейпцигском университете участником группы Гейзенберга Дёпелем был построен стенд с тяжеловодным замедлителем, в экспериментах на котором к маю 1942 года удалось достичь производства нейтронов в количестве, превышающем их поглощение.

Полноценной цепной реакции немецким учёным удалось достичь в феврале 1945 года в эксперименте, проводимом в горной выработке близ Хайгерлоха. Однако спустя несколько недель ядерная программа Германии прекратила существование.

Научная работа в США.

Цепная реакция деления ядер (кратко - цепная реакция) была впервые осуществлена американскими учеными в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор, названный «Чикагской поленницей» (Chicago Pile-1, CP-1). Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его диоксида. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ядерным топливом.

Научная работа в СССР.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова.

Первый советский реактор Ф-1 был построен в Лаборатории № 2 АН СССР (Москва). Этот реактор был выведен в критическое состояние 25 декабря 1946 года. Реактор Ф-1 был собран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Реактор Ф-1, как и реактор CP-1, не имел системы охлаждения, поэтому работал на очень малых уровнях мощности (Средняя мощность не превышала 20 Вт. Для сравнения, первый американский реактор CP-1 редко превышал 1 Вт мощности). Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1948 году введён в действие реактор И-1 (по другим данным он назывался А-1) по производству плутония.

27 июня 1954 года начала работать первая в мире атомная электростанция электрической мощностью 5 МВт в городе Обнинске.

Физические принципы работы ядерного реактора.

Схема ядерного реактора на тепловых нейтронах:

1 - Управляющий стержень.

2 - Радиационная защита.

3 - Теплоизоляция.

4 - Замедлитель.

5 - Ядерное топливо.

6 - Теплоноситель.

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Таким образом, возможны следующие варианты развития цепной реакции деления атомов:

1. ρ<0, Кэф

2. ρ>0, Кэф>1 - реактор надкритичен, интенсивность реакции и мощность реактора увеличиваются.

3. ρ=0, Кэф=1 - реактор критичен, интенсивность реакции и мощность реактора постоянны.

Классификация ядерных реакторов.

По назначению и характеру использования ядерные реакторы делятся на:

Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт.

Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.

Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов. Мощность таких реакторов обычно не превышает нескольких кВт.

Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов обычно не более 100 МВт. Выделяющаяся энергия, как правило, не используется.

Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным ядерным реакторам относят реакторы, использующиеся для опреснения морской воды.

Часто ядерные реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

Ядерный реактор. Атомный реактор.

Ядерный реактор — устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

История

Самоподдерживающаяся управляемая цепная реакция деления ядер (кратко — цепная реакция) была впервые осуществлена в декабре 1942 г. Группа физиков Чикагского университета , возглавляемая Э. Ферми , построила первый в мире ядерный реактор, названный СР-1 . Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ураном.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова . Первый советский реактор Ф-1 выведен в критическое состояние 25 декабря 1946 г. Реактор Ф-1 набран из графитовых блоков и имеет форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1949 г. введён в действие реактор по производству плутония, а 27 июня 1954 г. вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107°К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез). Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Схематическое устройство гетерогенного реактора на тепловых нейтронах1 — управляющий стержень; 2 — биологическая защита; 3 — тепловая защита; 4 — замедлитель; 5 — ядерное топливо; 6 — теплоноситель.

Схематическое устройство гетерогенного реактора на тепловых нейтронах

    управляющий стержень;

    биологическая защита;

    тепловая защита;

    замедлитель;

    ядерное топливо;

    теплоноситель.

Конструкция

Любой ядерный реактор состоит из следующих частей:

    Активная зона с ядерным топливом и замедлителем;

    Отражатель нейтронов, окружающий активную зону;

    Теплоноситель;

    Система регулирования цепной реакции, в том числе аварийная защита

    Радиационная защита

    Система дистанционного управления

Основная характеристика реактора — его выходная мощность. Мощность в 1 МВт соответствует цепной реакции, при которой происходит 3·1016 делений в 1 сек.

Физические принципы работы

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

    k > 1 — цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;

    k < 1 — реакция затухает, реактор — подкритичен, ρ < 0;

    k = 1, ρ = 0 — число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

    ω есть доля полного числа образующихся в реакторе нейтронов, поглощённых в активной зоне реактора, или вероятность избежать нейтрону утечки из конечного объема.

    k 0 — коэффициент размножения нейтронов в активной зоне бесконечно больших размеров.

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k0, поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k0 определяет принципиальную способность среды размножать нейтроны

k0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

    μ — коэффициент размножения на быстрых нейтронах;

    φ — вероятность избежать резонансного захвата;

    θ — коэффициент использования тепловых нейтронов;

    η — выход нейтронов на одно поглощение.

Объёмы современных энергетических реакторов могут достигать сотен м 3 и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора — объём активной зоны реактора в критическом состоянии. Критическая масса — масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu — 0,5 кг. Теоретически, наименьшей критической массой обладает 251 Cf, для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e — 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К∞ — 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси Ra и Be, 252 Cf или других веществ.

Иодная яма

Иодная яма — состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона (135 Xe). Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1—2 суток).

Классификация

По характеру использования

По характеру использования ядерные реакторы делятся на:

    Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает несколько кВт;

    Исследовательские реакторы, в которых потоки нейтронов и γ-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 Мвт; выделяющаяся энергия, как правило, не используется.

    Изотопные (оружейные, промышленные) реакторы, используемые для наработки изотопов, используемых в ядерных вооружениях, например 239Pu.

    Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, при опреснении воды, для привода силовых установок кораблей и т. д.; Тепловая мощность современного энергетического реактора достигает 3—5 ГВт.

По спектру нейтронов

    Реактор на тепловых нейтронах («тепловой реактор»)

    Реактор на быстрых нейтронах («быстрый реактор»)

    Реактор на промежуточных нейтронах

По размещению топлива

    Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

    Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими элементами (ТВЭЛ’ами), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

По степени обогащения:

    Естественный уран

    Слабо обогащённый уран

    Чистый делящийся изотоп

По химическому составу:

    металлический U

    UO 2 (диоксид урана)

    UC (карбид урана) и т. д.

По виду теплоносителя

    H 2 O (вода, см. Водо-водяной реактор)

    Газ, (см. Графито-газовый реактор)

    Реактор с органическим теплоносителем

    Реактор с жидкометаллическим теплоносителем

    Реактор на расплавах солей

По роду замедлителя

    С (графит, см. Графито-газовый реактор, Графито-водный реактор)

    H 2 O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

    D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

    Гидриды металлов

    Без замедлителя

По конструкции

    Корпусные реакторы

    Канальные реакторы

По способу генерации пара

    Реактор с внешним парогенератором

    Кипящий реактор

В начале XXI века наиболее распространены гетерогенные ядерные реакторы на тепловых нейтронах с замедлителями — H 2 O, С, D 2 O и теплоносителями — H 2 O, газ, D 2 O, например, водо-водяные ВВЭР, канальные РБМК.

Перспективными являются также быстрые реакторы. Топливом в них служит 238U, что позволяет в десятки раз улучшить использование ядерного топлива по сравнению с тепловыми реакторами, это существенно увеличивает ресурсы ядерной энергетики.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы из кристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов. Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несуществен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для ее сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135 Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135 Xe T½ = 9,2 ч; выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135 I (T½ = 6,8 ч). При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

    К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см 2 ·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135 Xe.

    Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см 2 ·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1%). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в ядерном реакторе происходит по следующим схемам:

    235 U + n → 236 U + n → 237 U →(7 сут)→ 237 Np + n → 238 Np →(2,1 сут)→ 238 Pu

    238 U + n → 239 U →(23 мин)→ 239 Np →(2,3 сут)→ 239 Pu (+осколки) + n → 240 Pu + n → 241 Pu (+осколки) + n → 242 Pu + n → 243 Pu →(5 ч)→ 243 Am + n → 244 Am →(26 мин)→ 244 Cm

Время между стрелками обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239 Pu, причём тем быстрее (при фиксированном выгорании 235 U), чем меньше обогащение урана. Далее концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238 U и 239 Pu. Характерное время установления равновесной концентрации 239 Pu ˜ 3/Ф лет (Ф в ед. 1013 нейтронов/см 2 ×сек). Изотопы 240 Pu, 241 Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в реакторе на 1 топлива. Эта величина составляет:

    ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;

    ˜ 20—30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3% 235U);

    до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1% ядерного топлива.

По мере выгорания топлива реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или постепенно, оставляя в работе ТВЭЛы разных «возрастов». Такой режим называется непрерывной перегрузкой топлива.

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, т. к. реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1—2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3%, через 1 ч — 1%, через сутки — 0,4%, через год — 0,05%.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 Гвт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4—1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Причём если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.

Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.

Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:

    Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;

    Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (т. е. мощность на выходе);

    Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.

В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.

Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).

На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определённых пределах, управление реактором производится без участия оператора.

На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности — система аварийной защиты.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -

Двадцать пятого декабря исполняется 70 лет со дня пуска первого отечественного ядерного реактора Ф-1, созданного для реализации советского атомного проекта. Реактор, построенный в Москве на территории Лаборатории №2 Академии наук СССР (ныне Национальный исследовательский центр "Курчатовский институт"), стал отправной точкой для развития многих мирных ядерных направлений, в которых Россия занимает лидирующие позиции.

О значении того события для истории России и всего мира, о важности правильного выбора государством стратегических приоритетов для своего развития и о новых уникальных технологиях, развиваемых Курчатовским институтом, в интервью специальному корреспонденту РИА Новости Владимиру Сычеву рассказал президент центра, член-корреспондент Российской академии наук Михаил Ковальчук.

Михаил Валентинович, что значил для нашей атомной отрасли, для страны пуск первого на континенте Евразия реактора Ф-1?

Не только для страны, но и для будущего всего мира. Это было событие, значение которого трудно переоценить. Представьте себе военно-политический контекст того времени. Советский Союз одержал великую победу в мае 1945-го. Наша страна вынесла основную тяжесть битвы с нацистской Германией. К концу Великой Отечественной войны Советский Союз обладал самой боеспособной и технически оснащенной армией. Произошло усиление роли СССР в мире. С нашим участием решались судьбы мира – на конференциях в Тегеране, Ялте, Потсдаме.

И вот 6 и 9 августа 1945 года США сбрасывают атомные бомбы на Хиросиму и Нагасаки. По сути, одна страна оказалась обладательницей невиданного доселе оружия колоссальной разрушительной силы. Фактически наша победа была обесценена. Вплоть до 29 августа 1949 года – испытания советской атомной бомбы на Семипалатинском полигоне - будущее нашей страны стояло под вопросом. Как известно, 1 января 1950 года, согласно американскому плану "Троян", предполагалось сбросить на города СССР 300 ядерных и 20 тысяч обычных бомб.

Поэтому реализация в очень сжатые сроки, с невероятным напряжением сил и средств, советского атомного проекта, самым первым этапом которого был пуск реактора Ф-1, позволила восстановить ядерный паритет. До сих пор мир живет без глобальной войны только потому, что есть баланс сил. И Россия по сей день сохранилась как суверенное государство потому, что тогда, в тяжелейшее время, руководство страны и передовая наука нашли взаимное понимание перед стоящей угрозой. Для нас, нынешних, те события служат примером того, как государство должно выбирать и сочетать тактические и стратегические приоритеты, в том числе научно-технологические.

- О каких приоритетах идет речь?

Тактические приоритеты - ближнесрочные, они обеспечивают нашу повседневную жизнь, нацелены на производство конкретных продуктов, создание и освоение определенных рынков и, по сути, являются отраслевыми.

А стратегические приоритеты имеют средне- и долгосрочный характер. От них изначально не ждут создания новых продуктов и рынков, но именно они обеспечивают создание принципиально новых, прорывных технологий и приводят к смене технологического уклада. Фактически стратегические приоритеты задают будущее.

Но тактические и стратегические приоритеты связаны друг с другом. Хотя без тактических приоритетов вы не решите текущих задач, но если пренебрегать приоритетами стратегическими, бросая силы и ресурсы только на решение тактических задач, то под угрозой может оказаться безопасность и независимость страны, ее будущее. Важно заметить, что стратегический приоритет, в том числе в науке, никогда не может быть выбран, образно говоря, на народном вече.

Тактический приоритет - это фактически баланс интересов огромного количества игроков, участников рынков с их продуктами и деньгами. А серьезный, стратегический приоритет может обозначить только группа передовых людей, которые смотрят вперед и видят на перспективу.

Стратегические приоритеты всегда продвигаются в борьбе, преодолевая сопротивление среды. Их обоснование должно подтверждаться большим числом профессиональных экспертиз. Только тогда может сложиться картина, обращенная в будущее.

- И атомный проект тому пример?

Я считаю, что это самый главный пример. В войну в числе тактических приоритетов были, например, эвакуация оборонных предприятий на восток, разворачивание производства новых видов вооружений, с помощью которых мы победили. Но начало в США работ по атомному оружию стало настоящим стратегическим вызовом для нашей страны.

И представьте, что бы произошло, если в самые трудные годы войны часть нашего научного сообщества не била во все колокола, говоря, что надо создавать наше атомное оружие, а власть не поддержала бы ученых и мы не начали бы работы по этой тематике. Возможно, к началу 1950-х годов наша страна вообще могла перестать существовать и мы с вами сейчас бы не беседовали.

Программа создания ядерного оружия в США называлась "Манхэттенским проектом". Первая атомная бомба была взорвана на полигоне в Нью-Мексико в июле 1945 года. Выдающиеся мировые ученые, многие из которых эмигрировали в США из оккупированной Европы, привлечение огромных финансовых и производственных возможностей, 130 тысяч рабочих и инженеров – все это позволило американцам создать атомную бомбу за три с небольшим года.

В СССР в 1930-е годы целый ряд физических институтов добился важных результатов в изучении, как это тогда называлось, перспектив использования внутриядерной энергии: Ленинградский Физико-технический институт во главе с Абрамом Иоффе, Институт химической физики, возглавляемый Николаем Семеновым, Радиевый институт под руководством Виталия Хлопина, ФИАН с Сергеем Вавиловым во главе, ХФТИ в Харькове.

Среди учеников Иоффе (кстати, когда-то учившегося у самого Вильгельма Рентгена) был и Игорь Васильевич Курчатов, который возглавил в ЛФТИ в начале 1930-х годов отдел ядерной физики. В 1937 году в Радиевом институте им совместно со Львом Мысовским был запущен первый в Европе циклотрон, там же в 1940 году Константин Петржак и Георгий Флеров открыли явление спонтанного деления урана.

Именно тот самый Георгий Флеров, техник-лейтенант (позднее академик, соратник Курчатова по созданию первой советской атомной бомбы, один из основателей Объединенного института ядерных исследований в Дубне) написал в апреле 1942 года с фронта письмо Иосифу Сталину, где почти с уверенностью говорил о том, что в США полным ходом начаты работы по созданию ядерного оружия. Примерно в это же время руководство ГРУ Генштаба Красной армии информировало АН СССР о зарубежных работах по использованию атомной энергии в военных целях.

Но собственно началом советского атомного проекта принято считать 28 сентября 1942 года, когда Государственный комитет обороны (ГОКО) признал необходимым возобновить прерванные началом войны "работы по исследованию возможности овладения внутриядерной энергией". Руководство страны, опираясь на свою систему экспертизы, на данные, полученные по разным каналам, в том числе от разведки, оценило то, что говорили ученые, и сделало абсолютно правильный выбор, начав работы по атомной проблеме.

- Почему создание и пуск реактора Ф-1 считаются ключевым этапом нашего атомного проекта?

Дело в том, что центральное ядро любой программы по созданию атомного оружия – это производство делящихся материалов, ядерной взрывчатки. Можно разрабатывать сколь угодно оригинальные конструкции ядерных зарядов, но без нужного количества плутония-239 или урана-235 эти идеи так и останутся идеями.

Изначально для нашей первой атомной бомбы был выбран вариант с плутониевым зарядом – наработка плутония в промышленном реакторе была более достижима, чем производство обогащенного урана, и с точки зрения времени, что очень важно.

Но сначала надо было построить экспериментальный реактор или котел, как он тогда назывался. Первые же эксперименты показали, что выпускавшиеся нашей промышленностью материалы, из которых мог бы быть собран реактор, содержат очень много вредных примесей. Для осуществления же цепной ядерной реакции нужен только очень чистый уран. Таким образом, главной целью стало создание уран-графитового котла как базы для следующего шага - промышленного производства ядерной взрывчатки - плутония. Советский Союз начинал свою атомную программу в условиях войны, практически полного отсутствия ресурсов, при огромных людских и материальных потерях.

Для создания нашего первого реактора требовалось обеспечить геологоразведку и добычу урана, с нуля создать его металлургию, наладить производство графита высочайшего, невиданного ранее качества. Помимо этого, создавались необходимые приборы. Только в конце 1945 года начали выпускать уран и графит нужного качества и в достаточных объемах.

Вторым важным направлением работ стал расчет работоспособности конструкции реактора для осуществления самоподдерживающейся цепной ядерной реакции. Это тоже было колоссальным делом. Летом 1946 года было построено специальное здание с шахтой для реактора глубиной 10 метров, с надежной биологической защитой, приборами внутреннего и внешнего дозиметрического контроля, дистанционным управлением реактором.

Поочередно были собраны четыре сборки (это сотни тонн графита), одновременно строили здание для реактора. В его котловане была собрана финальная пятая сборка, которая и стала 25 декабря 1946 года тем самым легендарным реактором Ф-1 – "Физическим первым". На осуществление этого грандиозного проекта понадобилось всего 16 месяцев! С тех пор Курчатовский институт в авангарде создания новых реакторов. А началось все это с реактора Ф-1.

Так что пуск Ф-1 стал воистину эпохальным событием – было экспериментально доказано, что наши ученые могут осуществить управляемую самоподдерживающуюся цепную реакцию деления урана. Хорошо известна сказанная Курчатовым сразу же после пуска Ф-1 фраза: "Атомная энергия теперь подчинена воле советского человека".

Это дало возможность сразу начать создание мощных промышленных реакторов для наработки оружейного плутония. После пуска реактора Ф-1 был проведен ряд очень важных экспериментов, что позволило построить и пустить на Южном Урале в 1948 году первый промышленный реактор. Вот три ключевые точки в создании нашей первой атомной бомбы: 25 декабря 1946 года – пуск экспериментального реактора Ф-1, 22 июня 1948 года – выведен на полную мощность построенный на Урале промышленный реактор - наработчик оружейного плутония "Аннушка", 29 августа 1949 года – взрыв нашего первого атомного заряда на полигоне в Семипалатинске.

Важнейший вывод из тех событий таков: создание и пуск реактора Ф-1 в тяжелейших для страны условиях – это демонстрация своевременности принятия руководством страны стратегически правильных решений в тяжелейших, подчас критических условиях.
Но пуск Ф-1 стал и отправной точкой для очень быстрого, стремительного развития атомной науки и техники, атомной промышленности страны. Мы в 1957 году спустили на воду свою первую атомную подводную лодку "Ленинский комсомол", а в 1959 году принят в эксплуатацию первый в мире атомный ледокол "Ленин". Сегодня Россия – обладатель единственного в мире атомного ледокольного флота. Он гарантирует нам стратегическое присутствие в северных широтах, где сосредоточены огромные запасы нефти, газа и биоресурсов.

А еще в 1954 году Игорь Васильевич Курчатов запустил в Обнинске первую в мире атомную промышленную электростанцию. Сегодня Россия, госкорпорация "Росатом" - мировой лидер в сфере сооружения атомных станций. АЭС "Куданкулам" в Индии, "Тяньвань" в Китае, "Бушер" в Иране – те станции, которые были пущены в нынешнем веке. Строится Островецкая станция в Белоруссии, планируется АЭС "Пакш-2" в Венгрии, "Руппур" в Бангладеш, "Ханхикиви" в Финляндии, "Аккую"в Турции. Портфель заказов "Росатома" сейчас превышает 300 миллиардов долларов. Мы осваиваем атомную энергетику по всем направлениям – от добычи урана до проектирования, строительства АЭС, обеспечения их работы, снабжения топливом и вывода из эксплуатации (то есть по всему жизненному циклу).

- Какова здесь роль Курчатовского института?

Курчатовский институт всегда был главной научной организацией нашей страны в атомной сфере. У нас есть такая схема, как мы ее называем "Курчатовское реакторное древо". На ней показано, как из реактора Ф-1 вышли реакторы разных типов – промышленные, энергетические, исследовательские, транспортные, которые используются на подводных лодках, на атомных ледоколах, ядерные энергетические установки для космоса.

И сейчас мы, можно сказать, независимый мозговой центр, обеспечивающий научное сопровождение проектов Росатома. Практика доказала правильность создания такой национальной лаборатории, какой является Курчатовский институт. У нас сосредоточен самый мощный ядерно-физический потенциал страны. Мы выступаем в качестве не только эксперта проектов "Росатома", но и их непосредственным научным участником. Каждая атомная станция разработана и пущена с участием Курчатовского института.

Атомная станция – сложнейший технологически, гигантский объект. Это сотни систем, работающих одновременно. Но сердце атомного энергоблока - ядерный реактор. Курчатовский институт – научный руководитель их проектирования и установки. Мы рассчитываем параметры этих реакторов, их активных зон, ядерного топлива.

После Чернобыля на какое-то время возникла идиосинкразия к атомной энергетике, во многом вызванная мощной информационной кампанией. Я считаю, что Запад во многом использовал чернобыльскую катастрофу, чтобы расшатать и без того ослабевшую на тот момент экономически, да и геополитически, конструкцию Советского Союза. Создавался в общественном мнении ужасный образ нашей страны, не способной обращаться с атомной энергетикой. Не буду сейчас вдаваться в обсуждение тех событий – это тема отдельного разговора, но по факту Чернобыль был использован для того, чтобы нанести тяжелый удар по Советскому Союзу. И надо сказать, что, к сожалению, это удалось.

Но после чернобыльской аварии мы начали активно работать, в том числе в международной кооперации, над разработкой новых систем безопасности АЭС. И созданные нами новые системы безопасности – так называемые ловушки расплава – уже входят в состав оборудования АЭС, они были впервые установлены на Тяньваньской АЭС в Китае и АЭС "Куданкулам" в Индии. Такие ловушки расплава предназначены для того, чтобы в случае тяжелой аварии расплавленное топливо надежно собрать в себя, удержать и не позволить радиоактивным веществам выйти за пределы реакторной установки.

Помимо этого, мы рассчитываем даже сценарии практически невероятных, так называемых запроектных аварий, вплоть до гипотетического падения самолетов на купол станций или террористического акта.

Мы занимаемся и работами по продлению сроков эксплуатации атомных блоков. Причем не просто изучаем возможности этого, но и реализуем их на практике - наши специалисты разработали систему для так называемого отжига корпусов реакторов, в результате чего почти полностью восстанавливаются их эксплуатационные характеристики.

Одним из наших основных направлений остаются ядерные технологии, их развитие, совершенствование. Мы не просто научные руководители таких современных проектов, как АЭС-2006 и ВВЭР-ТОИ, но и активные созидатели. Например, в области материаловедения – с нашим участием разработана новая марка стали, которая с помощью нанотехнологий приобретает особые свойства, а это поможет продлить срок работы корпусов реакторов до сотни лет.

Также у нас много наработок, связанных с атомными станциями малой мощности, актуальными, например, для Арктики. Там огромные расстояния, мало населенных пунктов, в основном это небольшие поселки, военные базы, и там просто не нужны большие энергоустановки. Что еще принципиально важно – в этом регионе востребованы установки, не требующие постоянного обслуживания на протяжении многих лет. В Курчатовском институте с 1970-х годов работают в этом направлении, мы создали работающие прототипы таких станций малой мощности, работающих по принципу прямого преобразования энергии. Такие реакторы по своим конструкционным параметрам обеспечивают пассивную безопасность, и кроме того, их можно изготавливать на заводе в рамках серийного производства и устанавливать практически в любом месте.

Сегодня наша атомная отрасль близка к тому, чтобы восстановить у себя полноценную систему организаций-научных руководителей. Насколько, по-вашему, это важно?

Это, с моей точки зрения, абсолютно необходимый процесс. Очевидно, что без восстановления системы научного руководства невозможны новые прорывы – ни в атомной области, ни в оборонной промышленности, ни в космической сфере. Ведь любая инженерная, технологическая, производственная структура или организация сама по себе не может, да и не должна генерировать новые идеи, поскольку она инженерно-технологически осваивает переданные ей научные результаты и отвечает за качественный, надежный выпуск конечной продукции. Поэтому она по сути своей является консервативной, и это здоровый консерватизм.

Но любой новый принцип может предложить и обосновать только наука – при полном контакте с инженерами и технологами.

Курчатовский институт выполняет эту функцию научного руководителя, и нам надо вернуться к этой системе в других областях. В военно-промышленном комплексе уже возрождается институт генеральных конструкторов и главных технологов.

- А какими Курчатовский институт видит пути развития атомной энергетики?

Нынешняя атомная энергетика построена на реакторах на так называемых тепловых нейтронах. Основным ядерным горючим для таких установок является уран-235. Но в природном уране доля изотопа уран-235 составляет всего лишь 0,7%, остальное практически целиком приходится на уран-238, и чтобы создать топливо для АЭС, необходимо получить обогащенный уран, в котором доля 235-го изотопа составляла бы уже несколько процентов.

Кстати, отечественные технологии обогащения урана тоже были разработаны в Курчатовском институте под руководством академика Исаака Кикоина. Наша обогатительная промышленность, комплекс по разделению изотопов остаются и сегодня одними из лучших в мире. У нас на подходе газовые центрифуги нового поколения, а, например, США в нынешнем году закрыли свою газоцентрифужную программу, так и не сумев освоить эту технологию.

Так вот, выжигая в реакторах на тепловых нейтронах уран-235, атомная энергетика почти не использует огромные объемы ценного сырья – урана-238. И это большая проблема с точки зрения эффективного обеспечения атомной энергетики сырьем. Но решить эту проблему можно, используя реакторы на быстрых нейтронах, как раз в них уран-238 "горит". К тому же с помощью так называемых реакторов-размножителей, или бридеров, возможно расширенное воспроизводство ядерного "горючего".

Есть еще один плюс "быстрых" реакторов. Ведь атомная энергетика оставляет отработавшее ядерное топливо, радиоактивные отходы, которые надо захоранивать, и для этого есть соответствующие технологии. Однако с экологической точки зрения это не лучший вариант, конечно.

Но можно сделать замкнутый ядерный топливный цикл - перерабатывать отработавшее ядерное топливо, выделять из него ценные делящиеся материалы, использовать их для создания нового ядерного топлива, как для реакторов на быстрых нейтронах, так и для тепловых реакторов, а опасные радионуклиды выжигать в "быстрых" реакторах. И вот тогда мы не только решим сырьевую проблему, но и придем к настоящей "зеленой" атомной энергетике в смысле минимизации радиоактивных отходов.

Россия – мировой лидер в освоении этих технологий. Мы сейчас – единственная страна, в которой работают реакторы на быстрых нейтронах промышленного уровня мощности, это реакторы БН-600 и БН-800 на Белоярской АЭС. Сейчас одна часть специалистов говорит, что будущее только за реакторами на быстрых нейтронах, а другая с этим не согласна. В действительности надо понимать, что наша перспективная атомная энергетика должна быть двухкомпонентной, в которой реакторы обоих типов будут взаимосвязаны. Это означает, что мы должны заниматься совершенствованием существующей базы наших водо-водяных энергетических реакторов на тепловых нейтронах ВВЭР, поскольку это массовые установки для производства электроэнергии. А параллельно выводить на качественно новый уровень "быстрые" реакторы, используя их для "дожигания" урана-238 и создания топливной базы для тепловых реакторов. И вместе мы получим полную гармонию.

Будущее энергетики связывается и с использованием термоядерных реакций. А Курчатовский институт, как хорошо известно, был родоначальником технологий и в этом направлении.

Атомная энергетика основана на использовании энергии, выделяемой при делении тяжелых атомных ядер. А основой термоядерной энергетики должно стать использование энергии, выделяемой при слиянии ядер легких изотопов водорода – дейтерия, трития. Причем в реакциях синтеза выделяется на порядки больше энергии, чем в реакциях деления, и поэтому термояд энергетически гораздо выгоднее.

Наши советские ученые из Курчатовского института предложили технологии термояда, еще в середине 1950-х была построена первая в мире установка токамак (тороидальная камера с магнитными катушками), в которой создавались условия, необходимые для протекания управляемого термоядерного синтеза. Поскольку невозможно получить материалы, которые могут удержать плазму, раскаленную до гигантских температур в десятки миллионов градусов, то в токамаке плазменный шнур удерживался мощным магнитным полем.

Но ведь надо не просто зажечь плазму, а удержать ее в течение определенного времени, чтобы плазма горела, работала, чтобы можно было получить как минимум столько же энергии, сколько было потрачено на ее зажигание. Поэтому сейчас на юге Франции, в Кадараше, с активным участием России, в том числе нашего центра, строится международный термоядерный реактор ITER. Это не термоядерная электростанция, а опытная установка, ее цель как раз и доказать такую возможность работы плазмы.

Вообще, проект ITER - это фактически переход к новым принципам овладения энергией, процессами ядерного синтеза, происходящими на Солнце, звездах. Такое трудно оценивать по каким-то шаблонам. Ведь поначалу никто не думал об экономических выгодах атомной энергетики, а сейчас – она основа современного энергетического развития.

Вопрос о том, какая будет термоядерная электростанция, - очень непростой и явно не ближайшего будущего. Но зато более близкая возможность применения плазменных технологий уже просматривается.

При термоядерном синтезе получается огромное количество нейтронов с большой энергией. Благодаря этому можно резко повысить эффективность установок, работающих на принципах деления тяжелых ядер. То есть можно создать гибридный реактор – например, термоядерный источник нейтронов окружить так называемым бланкетом, конструкцией, содержащей делящиеся ядра, например в виде жидких солей, в том числе урана-238. В Курчатовском институте уже ведутся работы в этом направлении.

С помощью жидкосолевых реакторов можно решать ресурсную проблему атомной энергетики путем использования тория-232, запасы которого на Земле велики, и превращения его в уран-233. Привлекательность концепции жидкосолевых реакторов, в отличие от традиционных реакторов с твердым топливом, заключается и в возможности изменения состава ядерного топлива без остановки реактора, вдобавок исключается накопление продуктов деления в его активной зоне. К тому же в одной и той же установке термоядерный источник может сочетаться с замкнутым ядерным топливным циклом.

Так что, на мой взгляд, гибридные реакторы – это реально достижимое использование термояда как источника нейтронов, способное приблизить, скажем так, "озеленение" атомной энергетики.

- Где, на ваш взгляд, еще могут быть найдены применения плазменных технологий?

В космосе. Мы стоим на пороге освоения дальнего космоса. Но с помощью кораблей, оснащенных только солнечными батареями, это сделать по понятным причинам будет невозможно. Нужны принципиально иные источники энергии. И сегодня, как известно, в России создается ядерная энергодвигательная установка мегаваттного класса. Подчеркну это слово – энергодвигательная. Вся современная космонавтика – это, образно говоря, полет Мюнхгаузена на ядре. То есть мы запускаем ракету, словно выстреливаем из пушки, в том смысле, что изменить траекторию "ядра" не можем. Но для освоения дальнего космоса это совершенно необходимо.

Сегодня орбита наших геостационарных спутников корректируется с помощью установленных на них плазменных двигателей, разработанных Курчатовским институтом и производимых калининградским ОКБ "Факел". Идея этих так называемых двигателей Морозова относится еще к 60-м годам прошлого века.

Но далее возможно создание мощных безэлектродных плазменных ракетных двигателей. Такие двигатели уже можно будет применять для дальних межпланетных полетов. А следующий шаг – термоядерный ракетный двигатель на основе установки термоядерного синтеза, называемой "открытой ловушкой", из которой будет истекать плазма, создавая реактивную тягу. С помощью такого двигателя можно будет ускорять или замедлять движение, маневрировать в пространстве. Это принципиальная вещь и, по существу, приведет к смене парадигмы в космонавтике.

Михаил Валентинович, в декабре 2015 года на встрече с президентом страны вы предложили принять отечественную термоядерную программу. Есть ли подвижки в этом направлении?

Да. Есть соответствующее поручение президента страны. Кроме того, в начале июня нынешнего года мы подписали с "Росатомом" соглашения о создании двух межведомственных центров – центра плазменных и термоядерных исследований, а также центра нейтринных исследований.

Мы предлагали также Российской академии наук присоединиться к проектам обоих центров, но понимания, увы, не нашли. Зато отдельные академические институты выразили интерес – Физико-технический институт в Санкт-Петербурге, Институт ядерной физики в Новосибирске просят подключить их к этой работе.

Такие центры сейчас формируются. По центру плазменных и термоядерных исследований совместно с "Росатомом" создается программа исследований, ее концепция сформирована и заслушана на соответствующих научно-технических советах. Сейчас эта концепция направлена президенту страны.

Вы говорили о "курчатовском эволюционном древе" ядерных реакторов. Но на стене в коридоре возле вашего кабинета висит еще одна схема – это "древо" самых разных технологий, вышедших из стен Курчатовского института. Там есть, например, и то, что сейчас называется технологиями живых систем.

Мало кто знает, но отечественная молекулярная биология начиналась тоже в Курчатовском институте, в его радиобиологическом отделе, созданном по инициативе Курчатова в 1958 году.

Дело в том, что для понимания действия радиации на живые организмы было необходимо знать их устройство на молекулярном уровне. Курчатов, Александров в то время, когда были гонения на генетику, спасли это направление в СССР, потому что их мнение всегда было весомо для власти. Из радиобиологического отдела вышли затем Институт генетики и селекции промышленных микроорганизмов (ГосНИИГенетики) и Институт молекулярной генетики. Сегодня науки о живом, нанобиотехнологии становятся магистральным направлением, более 70 процентов всех мировых исследований приходится именно на живые объекты. И наши отцы-основатели как в воду смотрели, выступив в поддержку работ в области биологии почти 60 лет назад.

В последние годы работы по природоподобным технологиям стали одной из визитных карточек Курчатовского института. Нет ли здесь противоречия с теми направлениями, о которых вы рассказывали?

Наоборот, в этом логика развития науки. Как я уже говорил, одним из наших приоритетов остаются ядерные технологии, атомная энергетика – это те самые тактические приоритеты, о которых мы говорили в самом начале. Однако сегодня мы стоим перед новым выбором стратегического приоритета, не менее жестким, чем в середине 1940-х. Он связан глобально с устойчивым развитием нашей цивилизации, которое невозможно без достаточного количества энергии и ресурсов. Причем речь идет не только о нефти и газе: истощаются запасы питьевой воды, пахотных земель, леса, полезных ископаемых. За них в мире уже идет острая борьба, это мы видим ежедневно. Уже многим очевидно, что сегодняшний глобальный кризис не может быть решен в существующей парадигме современной цивилизации.

Нужен качественный скачок, переход на иные принципы прежде всего производства и потребления энергии, которые тянут за собой и все остальные сферы. В созданной человеком техносфере мы используем машины и механизмы, потребляющие колоссальное количество энергии. Технический прогресс нарушил своеобразный обмен веществ природы, создав враждебные ей технологии. Эти технологии, по сути, являются плохими копиями отдельных элементов природных процессов и базируются на узкоспециализированной модели науки и на отраслевых технологиях.

В целом такое развитие было неизбежно и закономерно, оно стало платой за технический прогресс, за комфорт нашей жизни. Но в итоге влияние человека на окружающий мир уже близко к критической черте. А ведь последние десятилетия в условиях глобализации в технологическое развитие, а фактически истребление ресурсов, вовлекаются все новые страны и регионы, приближая ресурсную катастрофу.

Можно двигаться в прежней парадигме, строить все новые атомные станции и увеличивать производство энергии, исчерпывая ресурсы до конца. Но есть и второй путь - создание принципиально новых технологий и систем использования энергии через гибридные материалы и системы на их основе, то есть замена сегодняшнего конечного энергопотребителя системами, воспроизводящими принципы живой природы – на порядки более экономичные и безопасные.

Крупнейшие суперкомпьютеры потребляют десятки мегаватт энергии. И как считается, ограничение компьютерных мощностей будет связано как раз с нехваткой энергии для них. Но человеческий мозг потребляет всего десять ватт – то есть в миллион раз меньше! Сегодня развитие науки достигло такого уровня, что становится уже возможным конструировать такие природоподобные материалы и системы.

Инструмент создания новой природоподобной техносферы – конвергентные нано-, био-, информационные, когнитивные и социогуманитарные технологии (НБИКС-технологии). Именно они стали вторым важнейшим магистральным направлением научного развития Курчатовского института в последние годы.

- А как на практике выглядит конкретный НБИКС-проект?

Нанобиотехнологии уже стали новой технологической культурой, где на атомарном уровне стираются грани между живым и неживым, органическим природным миром и неорганикой. Дело ближайшего будущего – воспроизводство систем и процессов живой природы в виде синтетической клетки, массового создания искусственных тканей и органов, аддитивных технологий, использующих природный принцип формирования объектов, выращивая их, создавая под заказ.

Также активно развивается биоэнергетика, устройства, которые вырабатывают и используют энергию за счет естественных метаболических процессов в живых системах. Следующий шаг - создание искусственного интеллекта на основе когнитивных, информационных технологий и на материальной базе нано-био. Образно говоря, мы планируем создать компьютер, который и по производительности, и по энергопотреблению был бы сравним с нашим мозгом, на основе соединения новейших технологий с природоподобными.

У нас колоссальная программа исследований. Ведь в состав сегодняшнего национального исследовательского центра "Курчатовский институт" входит шесть площадок в Москве, Протвине, Санкт-Петербурге. В ближайшие пару лет мы на нашей площадке в Гатчине введем в эксплуатацию самый мощный в мире полнопоточный нейтронный исследовательский реактор ПИК, там же планируем построить новейший синхротронный источник четвертого поколения.

К нашим исследованиям мы подтягиваем и мощную образовательную инфраструктуру – недалеко от Гатчины, в Петергофе, расположен физический факультет Санкт-Петербургского университета, деканом которого я являюсь. А здесь в Москве, на базе МФТИ, мы еще семь лет назад создали первый в мире факультет НБИКС-технологий, который каждый год поставляет в Курчатовский институт порядка 50 выпускников. Еще у нас действует целая междисциплинарная образовательная школьная программа, которую мы запустили совместно с правительством Москвы и в которой сегодня участвуют почти 40 школ.

То есть, если можно выразиться одной фразой, будущее Курчатовского института – это, собственно, создание в нем самого будущего?

Я бы сказал так - созидание. Для этого у нас все есть.

В 2017 году Росатом набрал темп, убедительно доказывающий - ядерный ренессанс у нас в стране состоялся.

Мало того, наш атомный проект расширяется на новые и новые страны, заинтересованные в своем развитии, ведь энергия атома - это базовая генерация электроэнергии, это развитие науки, технологии, медицины, и даже сельского хозяйства.

Рассказывать об этом можно и нужно, но все ли помнят, как наша страна стала мировым лидером в этой отрасли? Все ли помнят, как все начиналось, кто именно покорял атом, создавал с нуля невиданные ранее технологии?

Чтобы понимать, куда и как мы движемся, надо помнить начало дороги. Аналитический онлайн-журнал Геоэнергетика.ru уже начал рассказывать об этом, но событий и имен тех, кто были первопроходцами атомной эры в СССР, было намного больше, чем описано в той статье.

25 декабря 1946 года в Лаборатории №2 (будущий Курчатовский институт) началась управляемая цепная реакция в нашем первом атомном реакторе Ф-1 - «физическом первом».

Из него, как из гоголевской «Шинели», выросли все наши реакторы - транспортные и исследовательские, «военные» и совершенно мирные.

Давайте вспомним, кто и как создавал эти технологии, как и кем была обеспечена их эволюция, как именно эволюция шла. Вспомнив, мы научимся лучше понимать свежие новости от Росатома , достигнутый уровень развития и перспективы.

«Атомные принципы»

Для начала напомним основные принципы, постулаты атомной энергетики, которые заданы не технологиями, а физическими законами - вечными и постоянными. Их не так много, их легко запомнить.


  1. Основа атомной энергетики - цепная реакция деления ядер атомов урана и плутония. Масса осколков деления меньше массы материнских ядер, излишек массы превращается в энергию, которую мы и используем для своих целей. Причина начала цепной реакции - первичные свободные нейтроны, сталкивающийся на своем пути с ядрами делящихся элементов. Свободные нейтроны, образующиеся при распаде ядер урана или плутония, называются «вторичными». Чтобы реакция стала цепной, вторичных нейтронов должно быть численно столько же или больше, чем первичных;

  2. Плутония не существует в природе, он образуется только внутри атомного реактора, поэтому основа атомной энергетики на сегодняшний день - уран;

  3. Цепная реакция деления идет только у ядер изотопа урана 235 U, количество которого в природной руде составляет 0,7%, а 99,3% массы руды составляет основной изотоп урана 238 U, в цепной реакции участия не принимающий. Вторичные нейтроны, образующиеся при делении ядер урана-235, имеют самые разные скорости, что в атомной физике означает и «имеющие разную энергию». Аналогия простая: если швырнуть камень в окно, часть осколков стекла летит быстро, часть - медленно, и предсказать, как именно поведет себя каждый осколок - невозможно;

  4. Ядра урана-235 делятся при взаимодействии с нейтронами, движущимися с любой скоростью, но быстрые нейтроны очень активно поглощаются ядрами урана-238, что может вызвать прекращение цепной реакции. При этом на медленные нейтроны уран-238 «не обращает внимания», поэтому одна из главных задач для осуществления цепной реакции - умение замедлить вторичные нейтроны. В качестве замедлителей можно использовать тяжелую или обычную воду и химически чистый графит;

  5. Для того, чтобы цепная реакция была управляемой, вторичных нейтронов должно быть больше, чем первичных, всего на 2%. Если вторичных нейтронов слишком много, реакция нарастает лавинообразно и выходит из-под контроля, крайняя степень ее развития - атомный взрыв. Вторая главная задача для осуществления контролируемой цепной реакции - коэффициент размножения свободных нейтронов не должен превышать 1,02. Для этого нужны системы управления и защиты.

Вот, собственно, и все принципиальные моменты. Чтобы осуществлять цепную реакцию деления, нужно побольше урана-235; чтобы цепная реакция не затухла сама по себе, нужен тот или иной замедлитель; чтобы цепная реакция не стала слишком буйной, нужна система управления и защиты. Три постулата атомной энергетики, заданные законами природы, законами физики.

НИИ-9

Реактор Ф-1 был создан для наработки оружейного плутония, его изотопа 239 Pu - вещества, дающего значительно большую энергию при атомном взрыве, чем уран-235.

Этот изотоп образуется в результате захвата ураном-238 свободного нейтрона, реакции захвата идут постоянно, но плутоний-239 под воздействием свободных нейтронов может начать собственную цепную реакцию деления. Чтобы этого не происходило, нужно научиться определять момент, когда атомов плутония-239 нарабатывается значимое количество, но его цепная реакция еще не успела начаться.

Конструкция Ф-1 такова, что оставляла возможность в буквальном смысле этого слова выхватывать из него урановые блочки в нужное время, после чего их отправляли на «химические процедуры» для отделения плутония-239 от прочих химических веществ.

В декабре 1947 группа Зинаиды Ершовой впервые получила 73 микрограмма плутония-239. Это стало доказательством того, что Ф-1 позволял получать оружейный плутоний, которому предстояло стать зарядом нашей первой атомной бомбы. Но было очевидно, что такого количества плутония-239 слишком мало - для заряда требовалось не менее 6 кг этого грозного элемента.

Пульт управления первого российского ядерного реактора, Фото: ru.wikipedia.org

“В конце 1945 года начали выпускать уран и графит необходимого качества и в необходимых объемах” - мы уже вспоминали эту фразу, и даже начали ее расшифровывать.

Создание атомного реактора было лишь частью огромного объема проблем, которые предстояло решить для создания нашей первой атомной бомбы. В СССР до начала войны не успели изучить все проблемы, связанные с ураном - теперь предстояло сделать это в самые короткие сроки, поскольку сведения от внешней разведки о том, что США готовят все новые планы атомной бомбардировки нашей страны, поступали непрерывно.

Как находить урановые руды, как организовать работу горно-обогатительных комбинатов, как повысить содержание урана-235, как выделить плутоний, как сделать его металлом, каковы свойства этого металла - сотни вопросов, сотни проблем, решать которые предстояло с нуля.

Нам часто приходится слышать «невероятно правдивые» истории о Лаврентии Берии, но факты говорят о совсем другом облике руководителя Спецкомитета.

Зинаида Ершова, «русская мадам Кюри», выступила с инициативой о создании научного центра для решения всех перечисленных проблем - Лаврентий Павлович «взял под козырек». 8 декабря 1944 вышло постановление ГКО (Государственного Комитета Обороны) «О мероприятиях по обеспечению развития добычи и переработки урановых руд», по одному из пунктов которого в структуре НКВД началось создание НИИ по урану.

Название ему дали, разумеется, такое, которое не говорило ни о чем: «институт специальных металлов НКВД», в котором Зинаида Ершова стала начальником лаборатории радиохимии. Руководство новым институтом доверили Виктору Борисовичу Шевченко, инженер-полковнику НКВД.

Сатрап-самодур, злобный надсмотрщик над учеными? Виктор Шевченко - выпускник московского института цветных металлов и сплавов, два года работавший в этом же институте заместителем директора по научной работе, доктор технических наук, в годы войны он был главным инженером Норильского медно-никелевого комбината. Виктор Шевченко «вытащил» всю организационную работу по созданию нового НИИ, но от этого он не перестал быть блестящим профессионалом-металлургом.

Можно ли было в те годы отделить НКВД от научной работы Спецкомитета? На наш взгляд - невозможно.

В конце 1945 года Шевченко организовал при НИИ-9 Лабораторию №12, которой была поручена работа по созданию промышленного производства тяжелой воды. Неожиданное желание руководить ее работой почувствовал Макс Фольмер, который до этого был директором Института физической химии в Берлине.

Узнав об этом решении профессора, выразили активное желание работать вместе с ним доктора наук В.К. Байерль и Г.А. Рихтель.

«Лаборатория трофейных немцев» трудилась успешно, в 1955 году завод по производству тяжелой воды начал работать, а товарищ Макс Фольмер вернулся в Берлин - руководить работой АН Германской Демократической Республики. Вот попробуйте на таком примере самостоятельно разделить НКВД и научную работу, если есть желание.

Андрей Анатольевич Бочвар

Стараниями Виктора Шевченко к концу 1945 закончилось строительство первых корпусов института, 27 декабря - официальный день рождения Высокотехнологического НИИ неорганических материалов, ВНИИНМ, который теперь носит имя Андрея Анатольевича Бовчара.

К середине 1946-го в НИИ-9 было уже более полутора тысяч сотрудников, 13 лабораторий, опытные производства в Москве и в Электростали, филиал в Ленинграде. Можно ли было в таком темпе организовать такой институт без помощи НКВД? Вопрос риторический.

А.А. Бочвар

В 1946 Курчатов пригласил к участию в атомном проекте лучшего в стране металловеда - Андрея Анатольевича Бочвара. Сын создателя московской школы металловедения, первый в Союзе доктор этой науки в его 33 года, Андрей Бовчар к 1946 успел сделать в науке и в развитии цветной металлургии страны столько, что хватило бы на две биографии.

По его учебникам готовились к работе несколько поколений наших металловедов, разработанный им способ фасонного литья с кристаллизацией под давлением был востребован в самолетостроении военной поры, в 1945 Андрей Анатольевич открыл явление сверхпластичности сплавов. Звучит сложно, но объяснить, что это открытие дает - просто.

Из листов бочваровской стали под небольшим давлением можно выдувать детали сложнейших форм - как это делают стеклодувы в своих мастерских. Ни сварочных швов, ни заклепок с болтами - сферы и полусферы, сложнейшие формы, этот метод используется и сейчас.

В 1946 году Бочвар был избран действительным членом АН - с такими регалиями, с такими заслугами он имел полное право заниматься «высокой наукой» и преподавательской работой, но на предложение Курчатова откликнулся мгновенно. Важность работы и одновременно возможность стать родоначальником металловедения ядерных материалов - настоящий ученый не мог не принять участие в нашем атомном проекте.

В 1946 Бочвар возглавил в НИИ-9 лабораторию «В» - название, которое вспоминают нечасто, но ее значение для нашего атомного проекта и особенно для атомной энергетики, трудно переоценить. Список разработок, открытий, которые были сделаны сотрудниками лаборатории «В» под руководством Андрея Бовчара настолько внушителен, что мы не станем размещать его в этой статье.

Если говорить об атомном и термоядерном оружии, то скажем коротко - без работы Андрея Бовчара создать ни то, ни другое было бы невозможно.

Все, что сделано из металлического плутония - его заслуги, отмеченные двумя звездами Героя Социалистического труда и Сталинскими премиями. Cоздание первого промышленного атомного реактора без его участия тоже было бы невозможно.

Проект реактора А-1

Реактор Ф-1 создавался для того, чтобы ученые могли убедиться в самой возможности осуществления контролируемой цепной реакции деления. Ф-1 не имел системы охлаждения, для наработки плутония его выводили на мощность почти в 4 МВт, но в таком режиме он мог работать считанные минуты - реакцию приходилось прекращать, чтобы остудить реактор при помощи вентиляторов.

Ф-1 не имел биологической защиты - им управляли дистанционно, накапливая данные, необходимые для того, чтобы ее разработать. Экспериментально измеренный коэффициент размножения нейтронов для Ф-1 оказался равен 1,00075. Вот, собственно, и сложилось описание проблем, которые предстояло решить при создании промышленного реактора.

Урана требовалось больше - это обеспечивало увеличение количества нарабатываемого плутония-239. Реактору требовалась биологическая защита, гарантирующая полную безопасность персонала. Реактору требовалась система охлаждения, чтобы исчез режим «полчаса работы + несколько часов работы вентиляторов».

Нужна была и промышленная переработка урановых блоков - не лабораторного, а заводского масштаба. Обратите внимание на то, что и в Ф-1 и в А-1 использовался природный уран, не обогащенный по содержанию изотопа-235. Разработка технологии обогащения еще не была закончена, да и не было в этом критической необходимости - целью было получение плутония-239.

Фотографии, рисунки, чертежи атомных реакторов не так уж и редко появляются на страницах СМИ, реакторы становятся «героями» документальных фильмов - наверняка вы, уважаемые читатели, встречались с этими изображениями неоднократно.

На всех реактор имеет вертикальное расположение - сверху вниз направлены ТВС и твэлы, стержни управления и защиты, снизу вверх движется теплоноситель. Простой вопрос: если Ф-1 имел горизонтальную конструкцию, то когда и почему появилась вертикаль?

Это изменение, кажущееся нам сейчас совершенно естественным - «придумка» замечательного ученого, конструктора, Инженера с большой буквы, которому мы во многом обязаны становлением атомной энергетики.

Николай Антонович Доллежаль, которого многие энциклопедии величают «ученым-энергетиком, конструктором ядерных реакторов». Это, конечно, соответствует истине, но это только часть правды - энциклопедии очень лихо пропускают первые 50 лет жизни этого удивительного человека.

Главный конструктор

Николай Антонович родился в 1899 году в семье инженера-путейца Антона Фердинандовича Доллежаля (чеха по происхождению), с 1912 семья обосновалась в Подольске. После реального училища, в 1917 году, Николай поступил на механический факультет МВТУ.

Отец Николая был убежден, что без работы руками, без чувства металла его сын не станет настоящим инженером, потому Николай без отрыва от учебы работал в депо, на паровозо-ремонтном заводе, в КБ при нем же. В 1923 году он получил диплом, следующие пять лет работал в проектных организациях, в 1929-1930 проходил стажировку в европейских странах, после чего полтора года провел под следствием - искали его связи с «Промышленной партией».

Искали, но не нашли, и уже в 1932 Николай Доллежаль занял пост заместителя главного инженера ОКБ №8 технического отдела ОГПУ, в 1933 стал заместителем директора по технической части «Гипроазотмаша» и одновременно - заведующим кафедрой химического машиностроения в Ленинградском политехе.

Так карьера конструктора-проектировщика и шла - Доллежаль был главным инженером завода «Большевик», Главхиммаша, тогда еще только строившегося «Уралмаша». Теплоэнергетика, компрессоростроение, химическая промышленность - такой диапазон был доступен только специалисту с огромным объемом знаний, с мышлением изобретателя, с «встроенным» стремлением к совершенствованию найденных решений.

Николай Антонович Доллежаль, Фото: biblioatom.ru

В 1943 настала пора проявить еще и организаторские способности - Николай Антонович возглавил НИИ химического машиностроения. Этот НИИ стал совершенно нетипичным научным учреждением - под руководством Доллежаля в нем сложился целый комплекс научно-исследовательских и проектно-конструкторских подразделений, да еще и с очень серьезными экспериментальной и производственной базами.

Сами разработали, сами спроектировали, сами проверили первые образцы и сами же наладили промышленное производство - «механизм», который потребовался в 1946 году в нашем атомном проекте. Игорь Курчатов имел хорошее чутье на такого уровня специалистов - именно он пригласил Николая Доллежаля к участию в работах над конструкцией первого промышленного реактора в январе 1946-го:

«Нам необходимо в кратчайший срок создать урановый котел промышленного назначения. Вы умеете работать на уровне молекул - теперь предстоит освоить атомный»

Ровно одного месяца хватило Николаю Доллежалю на то, чтобы полностью войти в курс того, чем занималась лаборатория №2 - уже в феврале 1946-го он предложил «развернуть» реактор из горизонтали в вертикаль, и Игорь Курчатов целиком и полностью согласился с решением «атомного новобранца».

Но, как и при создании любого другого сложного технического оборудования, научный руководитель и конструктор - это еще не все специалисты, которые обеспечивают разработку проекта.

Те из вас, кто связан с промышленным производством, без труда назовут еще одного специалиста, чья компетенция необходима в таких случаях - главный технолог.

Именно ему научный руководитель вручает техническое задание, исходя из требований которого технолог вместе с конструктором и разрабатывают каждый узел комплекса, каждый отдельный его механизм, продумывают их соединение в единое целое. Игорь Курчатов тогда же, в январе 1946-го, принял решение о том, кому можно поручить такую ответственную работу.

Главный технолог

Этим человеком стал Владимир Иосифович Меркин - 32-летний сотрудник Лаборатории №2, который, несмотря на возраст, с 1944 года был заведующим сектором №6, где разрабатывал один из способов перевода плутониевого заряда будущей бомбы в надкритичное состояние.

Взрыв происходит при превышении определенной массы плутония в определенном объеме некоторой критической величины, для чего достаточно приблизить друг к другу нескольких частей боевого заряда, каждая из которых имеет массу меньше критической. Но сближение это должно происходить с максимальной скоростью, чтобы взрыв произошел одновременно во всем объеме заряда.

Один из возможных способов - «пушечный», когда две части плутониевого заряда в буквальном смысле выстреливаются друг на встречу другу при помощи специально рассчитанных взрывов. Сектор №6 должен был решить проблему синхронизации этих двух вспомогательных взрывов с точностью в 0,0001 секунды при начальной скорости летящих частей 1’500 м/с.

Почему такая ответственная работа была поручена именно Владимиру Меркину? В 1939 году Меркин окончил Московский институт химического машиностроения, сразу после этого стал сотрудником ГСПИ-3, в котором занимался усовершенствованием систем дымовых завес для маскировки кораблей ВМФ.

В годы войны Василий Иосифович был переведен в ЦКБ-114, где разрабатывал новые огнеметы для нужд армии. Разработки были удачны - несколько видов огнеметов были запущены в промышленное производство, сыграли определенную роль в первые годы войны, за них в 1942 году Меркин был удостоен Сталинской премии второй степени.

Директор завода синтетического каучука В.В. Гончаров, с которым Меркин весьма тесно сотрудничал, рекомендовал в 1943 году Курчатову молодого талантливого инженера. После собеседования с руководителем Лаборатории №2 Меркина в считанные дни демобилизовали из армии и перевели в распоряжение Игоря Васильевича.

Как и многие специалисты того времени, Владимир Меркин и его сотрудники сумели в очень сжатые сроки переключиться на решение совершенно новых задач.

Проект первого промышленного реактора стал для Меркина началом большого пути - под его руководством были созданы еще несколько реакторов для наработки оружейного плутония, затем последовали проекты первого в СССР исследовательского водно-водяной реактора ВВР-2, реакторов для подводных лодок и первого атомного ледокола «Ленин», создание атомной летающей лаборатории на борту самолета Ту-95М, исследования газоохлаждаемых реакторов.

Но это все было позже, а в 1946 году Меркин стал участником квартета «научный руководитель - главный технолог - генеральный конструктор - металловед»:

Курчатов - Меркин - Доллежаль - Бочвар

«Охлаждать будем при помощи проточной воды, иначе обеспечить время непрерывной работы реактора, требуемое Игорем Васильевичем, невозможно». «Ясно, компрессор смонтируем сами, но уран не должен соприкасаться с водой». «Понятно, вот сплав оболочки, который выдержит температуру и радиацию».

«Владимир Иосифович требует, чтобы вода через активную зону шла со скоростью 2’500 тонн в час». «Понятно - вот сплав, который выдержит радиацию, давление и температуру и не будет подвержен коррозии».

«По техническому заданию будем ставить 26 стержней системы защиты и управления». «Да, вот сплав для технических каналов». «Игорь Васильевич дал сведения по биологической защите, для верхнего, нижнего и бокового защитного слоев будет использоваться вот такой сплав, весит вот столько - Николай, рассчитывайте конструкцию».

«Андрей Анатольевич, если у Николая Антоновича все рассчитано верно, вам предстоит добывать плутоний из 83’000 урановых блоков, рассчитывайте мощности переработки»…

При этом вычислительная аппаратура для решения всех этих задач - бумага в клеточку, логарифмическая линейка и арифмометр. Вопрос для тех, кто обладает развитым воображением - а какие достижения были бы по плечу группам Курчатова, Меркина, Бовчара и Доллежаля, будь в их распоряжении … ну, например, процессоры, стоящие в наших с вами домашних компьютерах и в телефонах?..

Общая схема реактора А-1, Рис.: economics.kiev.ua

Тепловая мощность - 100 Мвт, диаметр и высота активной зоны - 9,2 м, 150 тонн урана, 1’050 тонн графита. Общее количество урановых блоков - 83’000, по 74 блока на один технологический канал, которых в А-1 (такое наименование получил первый промышленный реактор, физики и инженеры ласково называли его «Аннушкой») 1’150 штук.

Отметим существенную деталь — температура воды на выходе из реактора составляла всего 85-90 градусов.

«Маяк»

В конце 1945 года было определено место, в котором предстояло сооружать целый комплекс зданий и сооружений - промышленный реактор, цеха химической переработки облученных урановых блоков, металлургические подразделения, помещения для химической очистки воды, электрическая подстанция, жилые дома для персонала и многое другое.

Место это известно всем, кто знаком с нашим атомным проектом - рядом с озером Кызыл-Таш на Южном Урале, в Челябинской области. Сейчас это город Озерск и промышленное объединение «Маяк», чья история заслуживает не одной, а множества статей.

Ответственным за строительство объекта 817 был назначен НКВД, головной организацией - «Челябметаллургстрой». 24 ноября 1945 года на строительной площадке был забит первый колышек, который стал стартом для грандиозного строительства, а в апреле 1946 был утвержден генеральный план.

Самым сложным оказался этап земляных работ при рытье котлована под реактор - проект еще не был закончен, все приходилось уточнять буквально на ходу. Сказывался и режим сверхсекретности - механизация земляных работ была минимальной, почти все приходилось делать вручную.

В сентябре 1946, когда началось рытье котлована, его планировали размерами 80 х 80 х 8 метров, а после всех уточнений глубина была увеличена до 53 метров. 340 тысяч кубометров грунта почти вручную, в зимний период 1946-47 годов, после 30 метров начался слой скальных пород - титаническая работа, на которой было занято 11’000 землекопов.

В июле 1947 года завершили бетонные работы, при этом впервые в качестве наполнителя бетона использовали железную руду - для повышения уровня биологической защиты.

Тогда же приказом Лаврентия Берии директором создаваемого комбината был назначен Ефим Павлович Славский, будущий глава министерства Среднего машиностроения, на должность главного инженера - Владимир Меркин.

Ефим Славский, который имел возможность напрямую обращаться к Лаврентию Берии, смог увеличить темп работ, для чего пришлось расширять и расширять жилые постройки - к концу 1947 года, когда одновременно шли строительство и монтаж оборудования, на площадке работало 60 тысяч человек.

Старт

Здание реактора закончили в конце 1947 года, монтаж начался сразу же. 1 июня 1948 года строительство реактора А-1, на сооружение которого потребовалось 5’000 тонн металлоконструкций и оборудования, 230 км трубопроводов, 165 км электрокабелей, 5’745 единиц арматуры и 3’800 приборов, было завершено.

Загрузка реактора графитом и ураном началась — да, правильно, 1 июня 1948 года, времени на передышки не было. Загрузку начали в 08:50 первого июня, в 23:15 седьмого июня на свое место лег последний, 36-й по счету, слой графита.

В 00 часов 30 минут 8 июня Игорь Васильевич Курчатов встал к пульту управления и осуществил физический пуск нашего первого промышленного атомного реактора. Реактор начал набирать мощность и хорошо поддавался регулированию, к утру Курчатов передал пульт управления дежурному персоналу, оставив запись в журнале:

«Начальникам смен! Предупреждаю, что в случае останова воды будет взрыв. Поэтому аппарат без воды нельзя оставлять ни при каких обстоятельствах. И.В. Курчатов»

На мощности 10 кВт была проведена проверка физических характеристик реактора, системы управления и защиты. Получив доклады о полной готовности, Курчатов отдал приказ на подъем мощности реактора до проектного уровня, которая была достигнута 19 июля в 12:45.

С этой датой связано начало производственной деятельности комбината 817, затем «Химического завода им. Д.И. Менделеева», затем «Предприятия п/я 21», затем «Химкомбината «Маяк» и только потом - Производственного объединения «Маяк».

Началась непрерывная круглосуточная работа объекта - с большими и малыми проблемами, решать которые приходилось буквально на ходу. Неожиданные явления коррозии, радиационное распухание графита и урановых блоков, сбои в водоснабжении технологических каналов и множество других инцидентов, предвидеть которые было невозможно.

Но персонал комбината раз за разом решал все проблемы, налаживая, модернизируя, исправляя, ремонтируя. Плутоний, наработанный на А-1 и стал в руках специалистов из группы Юлия Харитона боевым зарядом нашей первой атомной бомбы, РДС-1.

Инженеры и конструкторы получили огромный опыт, что позволило строить новые «военные» реакторы. В годы холодной войны и наиболее напряженной работы «Маяка» здесь одновременно работали 10 реакторов, сюда же прибывал на переработку уран из Северска и Железногорска.

Сам реактор А-1, который по плану должен был проработать три года, продержался чуть дольше — 39 лет, в 13 раз превысив любые гарантии, остановлен он был только в 1987 году.

Военные нужды - двигатель прогресса

Атомная энергия покорялась, осваивалась именно в оборонительных целях, но ученые, конструкторы, технологи, инженеры, собранные в огромный коллектив Спецпроекта, никогда не считали, что работают только и исключительно ради этого.

Да, перед ними поставили необходимость решить важнейшую задачу, от скорости и точности решения без всяких натяжек зависело физическое выживание страны. Но, открывая новые и новые тайны атома, его удивительные свойства, наши ученые видели, насколько полезной может стать атомная энергия в совершенно мирных целях.

Прошло совсем немного времени - и те же люди, которые создали самое грозное, самое могущественное оружие, стали создавать мирную атомную энергетику.

Игорь Курчатов стал тем человеком, который протащил, протолкнул через все властные структуры идею о создании АЭС, Владимир Меркин и Николай Доллежаль разрабатывали энергетические реакторы, Андрей Бовчар «сочинял» фантастические по свойствам сплавы, которые требовались для материалов твэлов, ТВС, корпусов реакторов.

Мы вспомнили только часть тех, кого по праву называем творцами нашего мирного атомного проекта, но и рассказали только о самых первых шагах его развития.

Тема следующей статьи будет логическим продолжением этой, если мы присмотримся к тому, что не было реализовано на реакторе А-1.

На выходе из реактора охлаждающая его вода имела совсем небольшую температуру - всего 85-90 градусов, в качестве сырья использовался природный уран, не обогащенный по составу изотопа-235.

Как связаны между собой эти факты, как наши атомщики сумели эту связь найти и реализовать - вот об этом в следующий раз.

Б. Марцинкевич