Нейтрон (элементарная частица). Большая энциклопедия нефти и газа

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Водорода, элемента, который имеет наиболее простое строение. Оно имеет положительный заряд и практически неограниченное время жизни. Это самая стабильная частица во Вселенной. Протоны, образовавшиеся в результате Большого Взрыва, до сих пор не распались. Масса протона составляет 1,627*10-27 кг или 938,272 эВ. Чаще эту величину выражают в электронвольтах.

Протон был открыт «отцом» ядерной физики Эрнестом Резерфордом. Он выдвинул гипотезу о том, что ядра атомов всех химических элементов состоят из протонов, так как по массе они превышают ядро атома водорода в целое число раз. Резерфорд поставил интересный опыт. В те времена уже была открыта естественная радиоактивность некоторых элементов. С помощью альфа-излучения (альфа-частицы представляют собой ядра гелия с высокими энергиями) ученый облучал атомы азота. В результате такого взаимодействия вылетала частица. Резерфорд предположил, что это протон. Дальнейшие опыты в пузырьковой камере Вильсона подтвердили его предположение. Так в 1913 году была открыта новая частица, но гипотеза Резерфорда о составе ядра оказалась несостоятельной.

Открытие нейтрона

Великий ученый нашел ошибку в своих расчетах и выдвинул гипотезу о существовании еще одной частицы, входящей в состав ядра и обладающей практически той же массой, что и протон. Экспериментально он не смог ее обнаружить.

Это сделал в 1932 году сделал английский ученый Джеймс Чедвик. Он поставил опыт, в ходе которого бомбардировал атомы бериллия высокоэнергетическими альфа-частицами. В результате ядерной реакции из ядра бериллия вылетала частица, впоследствии названная нейтроном. За свое открытие Чедвик уже через три года получил Нобелевскую премию.

Масса нейтрона действительно мало отличается от массы протона (1,622*10-27 кг), но эта частица не обладает зарядом. В этом смысле она нейтральна и в то же время способна вызывать деление тяжелых ядер. Из-за отсутствия заряда нейтрон может легко пройти через высокий кулоновский потенциальный барьер и внедриться в структуру ядра.

Протон и нейтрон обладают квантовыми свойствами (могут проявлять свойства частиц и волн). Нейтронное излучение используют в медицинских целях. Высокая проникающая способность позволяет этому излучению ионизировать глубинные опухоли и другие злокачественные образования и обнаруживать их. При этом энергия частиц относительно маленькая.

Нейтрон, в отличие от протона, нестабильная частица. Ее время жизни составляет около 900 секунд. Она распадается на протон, электрон и электронное нейтрино.

Источники:

  • Открытие протона и нейтрона

Очень часто в разных ситуациях люди слышат слово протон, а также ядро, нейтрон, электрон. Не всегда ученики и даже взрослые люди знают, откуда пошло это название и когда мир узнал про такие элементы.

Прошло большое количество времени прежде, чем ученые согласились, что все вещества состоят из молекул. Со временем даже смогли установить, что в своем составе атомы. После чего возник вопрос, из чего состоит атом. Атом включает в себя ядро и некоторое количество электронов, которые вращаются вокруг ядра.

Ядро атома водорода

Резерфорд, который был одним из первооткрывателем данного раздела физики и всю свою жизнь работал над развитием данного направления, предполагал, что в составе ядра любого химического элемента находится ядро водорода, что и сумел подтвердить с помощью опытов.

Эти опыты требовали значительной подготовки, и, проводя эксперименты, ученный и его ученики, часто приносили в жертву свое здоровье. Опыт проводился таким образом: с помощью альфа- происходила бомбардировка атомов азота. В итоге из ядер атомов азота выбивались разные частицы, которые фиксировались на светочувствительной пленке. Из-за слабого свечения Резерфорду приходилось по восемь часов сидеть в комнате без освещения, чтобы глаза лучше фиксировали световые следы.

Благодаря этим экспериментам Резерфорд смог по следам выбивания определить, что в атоме любого вещества есть именно атомы водорода и кислорода.

Протон

Частицу протон Резерфорд в 1919 году при проведении опыта, который доказал наличие в любом химическом элементе ядра атома водорода. Протон по сути является электроном, но с положительным знаком, он уравновешивает количество электронов, в такой ситуации атом называется нейтральным или незаряженным.

Название протон происходит от «протос», которое переводится с греческого как первый. Изначально, данную частицу хотели назвать от греческого слова «барос», которое означает тяжесть. Но в итоге было принято решение, что «протон» лучше описывает все качества данного элемента. Важно помнить, что масса протона приблизительно в 1840 раз больше, чем .

Нейтрон

Нейтрон также является одним из элементов атома. Данный элемент открыл Чедвик, после того как провел серию бомбардировок над ядром атома . При такой бомбардировке вылетали элементы, которые никак не реагировали на электрическое поле, поэтому их в итоге и назвали нейтронами.

Вселенная, которую порой называют космосом, состоит из галактик, то есть звездных систем. Сегодня есть различные гипотезы о возникновении Вселенной, но нет ни одного научно доказанного факта. Все эти теории строятся на основании предположений и расчетов различных ученых.

Инструкция

Основоположником изучения Вселенной стал польский астроном Николай Коперник, написавший труд о гелиоцентрической системе, в котором говорилось, что Земля является частью большой . В последующие времена труды Н. Коперника совершенствовали и дополняли другие ученые, но именно поляк сумел дать человечеству базовые знания о космическом мироустройстве.

Наиболее всестороннее и полное изучение Вселенной началось лишь в 20 веке. Это было связано с развитием технологий в науке. На данный момент известно, что основной химический элемент, который входит в состав Вселенной, - это водород. Его объем составляет 75% от общего условного объема, на втором месте стоит гелий, объем которого составляет 23%. Остальное занимают незначительные химические примеси. Долгие годы человечество наблюдает за развитием Вселенной для того, чтобы понять причины ее возникновения.

Что такое нейтрон? Каковы его структура, свойства и функции? Нейтроны - это самые большие из частиц, составляющих атомы, являющиеся строительными блоками всей материи.

Структура атома

Нейтроны находятся в ядре - плотной области атома, также заполненной протонами (положительно заряженными частицами). Эти два элемента удерживаются вместе при помощи силы, называем ядерной. Нейтроны имеют нейтральный заряд. Положительный заряд протона сопоставляется с отрицательным зарядом электрона для создания нейтрального атома. Несмотря на то что нейтроны в ядре не влияют на заряд атома, они все же обладают многими свойствами, которые влияют на атом, включая уровень радиоактивности.

Нейтроны, изотопы и радиоактивность

Частица, которая находится в ядре атома - нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

Что такое ядро?

В химии ядро ​​является положительно заряженным центром атома, который состоит из протонов и нейтронов. Слово «ядро» происходит от латинского nucleus, которое является формой слова, означающего "орех" или "ядро". Этот термин был придуман в 1844 году Майклом Фарадеем для описания центра атома. Науки, участвующие в исследовании ядра, изучении его состава и характеристик, называются ядерной физикой и ядерной химией.

Протоны и нейтроны удерживаются сильной ядерной силой. Электроны притягиваются к ядру, но двигаются так быстро, что их вращение осуществляется на некотором расстоянии от центра атома. Заряд ядра со знаком плюс исходит от протонов, а что такое нейтрон? Это частица, которая не имеет электрического заряда. Почти весь вес атома содержится в ядре, так как протоны и нейтроны имеют гораздо большую массу, чем электроны. Число протонов в атомном ядре определяет его идентичность как элемента. Число нейтронов означает, какой изотоп элемента является атомом.

Размер атомного ядра

Ядро намного меньше общего диаметра атома, потому что электроны могут быть отдалены от центра. Атом водорода в 145 000 раз больше своего ядра, а атом урана в 23 000 раз больше своего центра. Ядро водорода является наименьшим, потому что оно состоит из одиночного протона.

Расположение протонов и нейтронов в ядре

Протон и нейтроны обычно изображаются как уплотненные вместе и равномерно распределенные по сферам. Однако это упрощение фактической структуры. Каждый нуклон (протон или нейтрон) может занимать определенный уровень энергии и диапазон местоположений. В то время как ядро ​​может быть сферическим, оно может быть также грушевидным, шаровидным или дисковидным.

Ядра протонов и нейтронов представляют собой барионы, состоящие из наименьших называемых кварками. Сила притяжения имеет очень короткий диапазон, поэтому протоны и нейтроны должны быть очень близки друг к другу, чтобы быть связанными. Это сильное притяжение преодолевает естественное отталкивание заряженных протонов.

Протон, нейтрон и электрон

Мощным толчком в развитии такой науки, как ядерная физика, стало открытие нейтрона (1932 год). Благодарить за это следует английского физика который был учеником Резерфорда. Что такое нейтрон? Это нестабильная частица, которая в свободном состоянии всего за 15 минут способна распадаться на протон, электрон и нейтрино, так называемую безмассовую нейтральную частицу.

Частица получила свое название из-за того, что она не имеет электрического заряда, она нейтральна. Нейтроны являются чрезвычайно плотными. В изолированном состоянии один нейтрон будет иметь массу всего 1,67·10 - 27 , а если взять чайную ложку плотно упакованную нейтронами, то получившийся кусок материи будет весить миллионы тонн.

Количество протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свою уникальную идентичность. В атомах некоторых элементов, например углерода, число протонов в ядрах всегда одинаково, но количество нейтронов может различаться. Атом данного элемента с определенным количеством нейтронов в ядре называется изотопом.

Опасны ли одиночные нейтроны?

Что такое нейтрон? Это частица, которая наряду с протоном входит в Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию. Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

Нейтрон в атоме - это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

Многим со школы хорошо известно, что все вещества состоял из атомы. Атомы в свою очередь состоят из протонов и нейтронов образующих ядро атомы и электронов, расположенных на некотором расстоянии от ядра. Многие также слышали, что свет тоже состоит из частиц – фотонов. Однако на этом мир частиц не ограничивается. На сегодняшний день известно более 400 различных элементарных частиц. Попробуем понять, чем элементарные частицы отличаются друг от друга.

Существует множество параметров, по которым можно отличить элементарные частицы друг от друга:

  • Масса.
  • Электрический заряд.
  • Время жизни. Почти все элементарные частицы имеют конечное время жизни по истечении которого они распадаются.
  • Спин. Его можно, весьма приближенно считать как вращательный момент.

Еще несколько параметров, или как их принято называть в науке квантовых чисел. Эти параметры не всегда имеют понятный физический смысл, но они нужны для того, чтобы отличать одни частицы от других. Все эти дополнительные параметры введены как некоторые величины, сохраняющиеся во взаимодействии.

Массой обладают почти все частицы, кроме фотоны и нейтрино (по последним данным нейтрино обладают массой, но столь малой, что часто ее считают нулем). Без массовые частицы могут существуют только в движении. Масса у всех частиц различна. Минимальной массой, не считая нейтрино, обладает электрон. Частицы, которые называются мезонами обладают массой в 300-400 раз большей массы электрона, протон и нейтрон почти в 2000 раз тяжелее электрона. Сейчас уже открыты частицы, которые почти в 100 раз тяжелее протона. Масса,(или ее энергетический эквивалент по формуле Эйнштейна:

сохраняется во всех взаимодействиях элементарных частиц.

Электрическим зарядом обладают не все частицы, а значит что не все частицы способны участвовать в электромагнитном взаимодействии. У всех свободно существующих частиц электрический заряд кратен заряду электрона. Кроме свободно существующих частиц существуют также частицы, находящие только в связанном состоянии, о них мы скажем чуть позже.

Спин, как и другие квантовые числа у различных частиц различны и характеризуют их уникальность. Некоторые квантовые числа сохраняются в одних взаимодействиях, некоторые в других. Все эти квантовые числа определяют то, какие частицы взаимодействуют с какими и как.

Время жизни также очень важная характеристика частицы и ее мы рассмотрим наиболее подробно. Начнем с замечания. Как мы уже сказали в начале статьи – все что нас окружает состоит из атомов (электронов, протонов и нейтронов) и света (фотонов). А где же тогда еще сотни различных видов элементарных частиц. Ответ прост – всюду вокруг нас, но мы из не замечаем по двум причинам.

Первая из них – почти все остальные частицы живут очень мало, примерно 10 в минус 10 степени секунд и меньше, и потому не образовывают таких структур как атомы, кристаллические решетки и т.п. Вторая причина касается нейтрино, эти частицы хоть и не распадаются, но они подвержены только слабому и гравитационному взаимодействию. Это значит, что эти частицы взаимодействуют на столько незначительно, что обнаружить из почти невозможно.

Представим наглядно в чем выражается то, на сколько частица хорошо взаимодействуем. Например поток электронов можно остановить довольно тонким листом стали, порядка нескольких миллиметров. Это произойдет потому, что электроны сразу начнут взаимодействовать с частицами листа стали, будут резко менять свой направления, излучать фотоны, и таким образом довольно быстро потеряют энергию. С потоком нейтрино все не так, они почти без взаимодействий могут пройти насквозь Земного Шара. И потому обнаружить их очень тяжело.

Итак, большинство частиц живут очень короткое время, по истечении которого она распадаются. Распады частиц- наиболее часто встречающиеся реакции. В результате распада одна частица распадается на несколько других меньшей массы, а те в свою очередь распадаются дальше. Все распады подчиняются определенным правилам – законам сохранения. Так, например, в результате распада должен сохраняться электрический заряд, масса, спин и еще ряд квантовых чисел. Некоторые квантовые числа в ходе распада могут меняться, но тоже подчиняясь определенным правилам. Именно правила распада говорят нам о том, что электрон и протон это стабильные частицы. Они уже не могут распадаются подчиняясь правилам распада, и потому именно ими заканчиваются цепочки распада.

Здесь хочется сказать несколько слов о нейтроне. Свободный нейтрон тоже распадается, на протон и электрон примерно за 15 минут. Однако когда нейтрон находится в атомном ядре это не происходит. Этот факт можно объяснить различными способами. Например так, когда в ядре атома появляется электрон и лишний протон от распавшегося нейтрона, то тут же происходит обратная реакция – один из протонов поглощает электрон и превращается в нейтрон. Такая картина называется динамическим равновесием. Она наблюдалась в вселенной на ранней стадии ее развития вскоре после большого взрыва.

Кроме реакций распада есть еще реакции рассеяния – когда две или более частиц вступают во взаимодействие одновременно, и в результате получается одна или несколько других частиц. Также есть реакции поглощение, когда из двух или более частиц получается одна. Все реакции происходят в результате сильного слабого или электромагнитного взаимодействия. Реакции идущие за счет сильного взаимодействия идут быстрее всего, время такой реакции может достигать 10 в минус 20 секунды. Скорость реакций идущих за счет электромагнитного взаимодействия ниже, тут время может быть порядка 10 в минус 8 секунды. Для реакций слабого взаимодействия время может достигать десятков секунд а иногда и годы.

В завершении рассказа про частицы расскажем про кварки. Кварки – это элементарные частицы, имеющие электрический заряд кратный трети заряда электрона и которые не могут существовать в свободном состоянии. Их Взаимодействие устроено так, что они могут жить только в составе чего либо. Например комбинация из трех кварков определенного типа образуют протон. Другая комбинация дает нейтрон. Всего известно 6 кварков. Их различные комбинации дают нам разные частицы, и хотя далеко не все комбинации кварков разрешены физическими законами, частиц, составленных из кварков довольно много.

Здесь может возникнуть вопрос, как можно протон называть элементарным если он состоит из кварков. Очень просто – протон элементарен, так как его невозможно расщепить на составные части – кварки. Все частицы, которые участвуют в сильном взаимодействии состоят из кварков, и при этом являются элементарными.

Понимание взаимодействий элементарных частиц очень важно для понимания устройства вселенной. Все что происходит с макро телами есть результат взаимодействия частиц. Именно взаимодействием частиц описываются рост деревьев на земле, реакции в недрах звезд, излучение нейтронных звезд и многое другое.

Вероятности и квантовая механика >

Протон -- стабильная частица из класса адронов, ядро атома водорода.

Трудно сказать, какое событие следует считать открытием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906--1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона, подтвердив открытие искусственного превращения элементов. В этих опытах?-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10-21. Масса протона mp = (938,2796 ± 0,0027)МэВ или ~ 1,6-10-24 г, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами -- глюонами, квантами поля, переносящего сильные взаимодействия. Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры ~ 10-13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия -- протоны и электроны в атомах. Примерами слабых взаимодействий могут служить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и нейтрино (для свободного протона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полуцелым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, различные гипероны (?, ?, ?, ?) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число -- барионный заряд, равный 1 для барионов, - 1 -- для антибарионов и О -- для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохранения барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сохранение барионного заряда делает невозможным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический характер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабильностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

В то же время в теориях, объединяющих все виды фундаментальных взаимодействий, предсказываются процессы, приводящие к нарушению барионного заряда и к распаду протона. Время жизни протона в таких теориях указывается не очень точно: примерно 1032±2 лет. Это время огромно, оно во много раз больше времени существования Вселенной (~ 2*1010 лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни. Однако поиски распада протона представляют сейчас одну из важнейших задач экспериментальной физики. При времени жизни протона ~ 1032 лет в объеме воды в 100 м3 (1 м3 содержит ~ 1030 протонов) следует ожидать распада одного протона в год. Остается всего лишь зарегистрировать этот распад. Открытие распада протона станет важным шагом к правильному пониманию единства сил природы.

Нейтрон -- нейтральная частица, относящаяся к классу адронов. Открыт в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона qn равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что |qn| <10-20e (здесь е -- элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку |qn|< 2?10-22 е. Спин нейтрона равен 1/2. Как адрон с полуцелым спином, он относится к группе барионов. У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен +1.Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного u-кварка с электрическим зарядом +2/3 и двух d-кварков с зарядом - 1/3, связанных между собой глюонным полем.

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон -- нестабильная частица, распадающаяся на протон (р), электрон (е-) и электронное антинейтрино. Время жизни нейтрона составляет (917 ?14) с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: mn-mp(1,29344 ±0,00007) МэВ. Из сопоставления ее с массой протона получим массу нейтрона: mn = 939,5731 ± 0,0027 МэВ; это соответствует mn ~ 1,6-10-24.Нейтрон участвует во всех видах фундаментальных взаимодействий. Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия -- бета-распад нейтрона.

Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса. Это лишь один из примеров его электромагнитного взаимодействия. Большой интерес приобрели поиски дипольного электрического момента нейтрона, для которого была получена верхняя граница. Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР; поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах.

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии:

медленные нейтроны (<105эВ, есть много их разновидностей),

быстрые нейтроны (105?108эВ), высокоэнергичные (> 108эВ).

Весьма интересными свойствами обладают очень медленные нейтроны(10-7эВ), которые получили название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов. Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне в институте ядерных исследований спустя почти десятилетие.

Недавно ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.