Фаза митоза во время. Деление клетки

Развитие и рост живых организмов невозможен без процесса деления клеток. В природе существует несколько видов и способов деления. В данной статье мы кратко и понятно расскажем о митозе и мейозе, разъясним основное значение этих процессов, познакомим с тем, чем отличаются они, а чем схожи.

Митоз

Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых клеток, а именно мышечных, нервных, эпителиальных и прочих.

Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса - равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения один к одному схожи с материнскими.

Рис. 1. Схема митоза

Время между процессами деления называются интерфазой . Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:

  • синтез белка и молекулы АТФ в клетке;
  • удваивание хромосом и образование двух сестринских хроматид;
  • увеличение числа органоидов в цитоплазме.

Мейоз

Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.

ТОП-4 статьи которые читают вместе с этой

Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.

Рис. 2. Схема мейоза

Биологическим значением мейоза является образование чистых гамет, которые содержат гаплоидный, другими словами одинарный, набор хромосом. Диплоидность восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.

Уменьшение числа хромосом при мейозе очень важно, так как в противном случае при каждом делении число хромосом увеличивалось бы. Благодаря редукционному делению поддерживается постоянное число хромосом.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза. Подробнее узнать о сходствах и различиях двух процессов вы сможете в сравнительной характеристике.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Интерфаза

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Хромосомы удваиваются, образуются две хроматиды, соединённые центромерой.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе. Отличием является продолжительность, особенно при образовании яйцеклеток.

Гаплоидный набор хромосом. Синтез отсутствует.

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом происходит кроссинговер - обмен генетической информации на некоторых участках. После хромосомы расходятся.

По продолжительности - короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Метафаза

Наблюдается спирализация и расположение хромосом в экваториальной части веретена.

Аналогично митозу

Тоже, что и при митозе, только с гаплоидным набором.

Центромеры делятся на две самостоятельные хромосомы, которые расходятся к разным полюсам.

Деление центромер не происходит. К полюсам отходит одна хромосома, состоящая из двух хроматид.

Аналогично митозу, только с гаплоидным набором.

Телофаза

Цитоплазма делится на две одинаковые дочерние клетки с диплоидным набором, образуются ядерные мембраны с ядрышками. Веретено деления исчезает.

По длительности непродолжительная фаза. Гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

Цитоплазма делится. Образуется четыре гаплоидные клетки.

Рис. 3. Сравнительная схема митоза и мейоза

Что мы узнали?

В природе деление клеток отличается в зависимости от их назначения. Так, например, неполовые клетки делятся путём митоза, а половые - мейоза. Эти процессы имеют схожие схемы деления на некоторых этапах. Главным отличием является наличие числа хромосом у образованного нового поколения клеток. Так при митозе у новообразованного поколения диплоидный набор, а при мейозе гаплоидный набор хромосом. Время протекания фаз деления также отличаются. Огромную роль в жизнедеятельности организмов играют оба способа деления. Без митоза не проходит ни одно обновление старых клеток, репродукция тканей и органов. Мейоз помогает поддерживать постоянное количество хромосом в новообразованном организме при размножении.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 4199.

Митоз (кариокинез) – это непрямое деление клетки, в котором выделяют фазы: профаза, метафаза, анафаза и телофаза.

1. Профаза характеризуется:
1) хромонемы спирализуются, утолщаются и укорачиваются.
2) ядрышки исчезают, т.е. хромонема ядрышка упаковывается к хромосомам, имеющим вторичную перетяжку, которую называют ядрышковый организатор.

3) в цитоплазме образуется два клеточных центра (центриолей) и формируются нити веретена деления.
4) в конце профазы, распадается ядерная оболочка и хромосомы оказываются в цитоплазме. Набор хромосом профазы составляет - 2п4с.

2. Метафаза характеризуется:
1) к центромерам хромосом прикрепляются нити веретена деления и хромосомы начинают двигаться и выстраиваются на экваторе клетки.
2) метафазу называют «паспортом клетки», т.к. хорошо видно, что хромосома состоит из двух хроматид. Хромосомы максимально спирализованы, хроматиды начинают отталкиваться друг от друга, но еще соединены в области центромера. На этой стадии изучают кариотип клеток, т.к. четко видно число и форма хромосом. Фаза очень короткая.
Набор хромосом метафазы составляет - 2п4с.

3. Анафаза характеризуется:
1) центромеры хромосом делятся и сестринские хроматиды расходятся к полюсам клетки и становятся самостоятельными хроматидами, которые называют дочерними хромосомами. На каждом полюсе в клетке находится по диплоидному набору хромосом.
Набор хромосом анафазы составляет - 4п4с.

4. Телофаза характеризуется:
Однохроматидные хромосомы деспирализуются у полюсов клетки, образуются ядрышки, восстанавливается ядерная оболочка.
Набор хромосом телофазы составляет - 2п2с.
Телофаза заканчивается цитокинезом. Цитокинез – процесс разделения цитоплазмы между двумя дочерними клетками. Цитокинез происходит по разному у растений и животных.
В животной клетке. На экваторе клетки появляется кольцевидная перетяжка, которая углубляется и полностью перешнуровывает тело клетки. В результате образуется две новые клетки вдвое меньше материнской клетки. В области перетяжки много актина, т.е. в движении играют роль микрофиламенты.
Цитокинез идет путем перетяжки.
В растительной клетке. На экваторе, в центре клетки в результате скопления пузырьков диктиосом комплекса Гольджи, образуется клеточная пластинка, которая разрастается от центра к периферии и приводит к разделению материнской клетки на две клетки. В дальнейшем перегородка утолщается, за счет отложения целлюлозы, образуя клеточную стенку. Цитокинез идет путем перегородки.

Биологический смысл митоза

В результате митоза образуется две дочерние клетки с таким же набором хромосом, как и материнская клетка.

Схема митоза

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Митоз условно разделяют на четыре фазы: профазу, метафазу, анафазу и телофазу.

Профаза. Две центриоли начинают расходиться к противоположным полюсам ядра. Ядерная мембрана разрушается; одновременно специальные белки объединяются, формируя микротрубочки в виде нитей. Центриоли, расположенные теперь на противоположных полюсах клетки, оказывают организующее воздействие на микротрубочки, которые в результате выстраиваются радиально, образуя структуру, напоминающую по внешнему виду цветок астры («звезда»). Другие нити из микротрубочек протягиваются от одной центриоли к другой, образуя веретено деления. В это время хромосомы спирализуются и вследствие этого утолщаются. Они хорошо видны в световом микроскопе, особенно после окрашивания. Считывание генетической информации с молекул ДНК становится невозможным: синтез РНК прекращается, ядрышко исчезает. В профазе хромосомы расщепляются, но хроматиды все еще остаются скрепленными попарно в зоне центромеры. Центромеры тоже оказывают организующее воздействие на нити веретена, которые теперь тянутся от центриоли к центромере и от нее к другой центриоли.

Метафаза. В метафазе спирализация хромосом достигает максимума, и укороченные хромосомы устремляются к экватору клетки, располагаясь на равном расстоянии от полюсов. Образуется экваториальная, или метафазная, пластинка. На этой стадии митоза отчетливо видна структура хромосом, их легко сосчитать и изучить их индивидуальные особенности. В каждой хромосоме имеется область первичной перетяжки - центромера, к которой во время митоза присоединяются нить веретена деления и плечи. На стадии метафазы хромосома состоит из двух хроматид, соединенных между собой только в области центромеры.

Рис. 1. Митоз растительной клетки. А - интерфаза;
Б, В, Г, Д- профаза; Е, Ж-метафаза; 3, И - анафаза; К, Л, М-телофаза

В анафазе вязкость цитоплазмы уменьшается, центромеры разъединяются, и с этого момента хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, тянут хромосомы к полюсам клетки, а плечи хромосом при этом пассивно следуют за центромерой. Таким образом, в анафазе хроматиды удвоенных еще в интерфазе хромосом точно расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом (4n4с).

Таблица 1. Митотический цикл и митоз

Фазы Процесс, происходящий в клетке
Интерфаза Пресинтетический период (G1) Синтез белка. На деспирализованных молекулах ДНК синтезируется РНК
Синтетический период (S) Синтез ДНК - самоудвоение молекулы ДНК. Построение второй хроматиды, в которую переходит вновь образовавшаяся молекула ДНК: получаются двухроматидные хромосомы
Постсинтетический период (G2) Синтез белка, накопление энергии, подготовка к делению
Фазы митоза Профаза Двухроматидные хромосомы спирализуются, ядрышки растворяются, центриоли расходятся, ядерная оболочка растворяется, образуются нити веретена деления
Метафаза Нити веретена деления присоединяются к центромерам хромосом, двухроматидные хромосомы сосредоточиваются на экваторе клетки
Анафаза Центромеры делятся, однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки
Телофаза Однохроматидные хромосомы деспирализуются, сформировывается ядрышко, восстанавливается ядерная оболочка, на экваторе начинает закладываться перегородка между клетками, растворяются нити веретена деления


В телофазе хромосомы раскручиваются, деспирализуются. Из мембранных структур цитоплазмы образуется ядерная оболочка. В это время восстанавливается ядрышко. На этом завершается деление ядра (кариокинез), затем происходит деление тела клетки (или цитокинез). При делении животных клеток на их поверхности в плоскости экватора появляется борозда, постепенно углубляющаяся и разделяющая клетку на две половины - дочерние клетки, в каждой их которых имеется по ядру. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму: она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки (т.е. растет изнутри кнаружи). Клеточная пластинка формируется из материала, поставляемого эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточную мембрану и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки. Особенности протекания митоза у животных и растений приведены в таблице 2.

Таблица 2. Особенности митоза у растений и у животных

Так из одной клетки формируются две дочерние, в которых наследственная информация точно копирует информацию, содержавшуюся в материнской клетке. Начиная с первого митотического деления оплодотворенной яйцеклетки (зиготы) все дочерние клетки, образовавшиеся в результате митоза, содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клеток, заключающийся в точном распределении генетического материала между дочерними клетками. В результате митоза обе дочерние клетки получают диплоидный набор хромосом.

Весь процесс митоза занимает в большинстве случаев от 1 до 2 часов. Частота митоза в разных тканях и у разных видов различна. Например, в красном костном мозге человека, где каждую секунду образуется 10 млн эритроцитов, в каждую секунду должно происходить 10 млн. митозов. А в нервной ткани митозы крайне редки: так, в центральной нервной системе клетки в основном перестают делиться уже в первые месяцы после рождения; а в красном костном мозге, в эпителиальной выстилке пищеварительного тракта и в эпителии почечных канальцев они делятся до конца жизни.

Регуляция митоза, вопрос о пусковом механизме митоза.

Факторы, побуждающие клетку к митозу точно не известны. Но полагают, что большую роль играет фактор соотношения объемов ядра и цитоплазмы (ядерно-плазменное соотношение). По некоторым данным, отмирающие клетки продуцируют вещества, способные стимулировать деление клетки. Белковые факторы, отвечающие за переход в фазу М, первоначально были идентифицированы на основе экспериментов по слиянию клеток. Слияние клетки, находящейся в любой стадии клеточного цикла, с клеткой находящейся в М фазе, приводит к вхождению ядра первой клетки в М фазу. Это означает, что в клетке находящейся в М фазе существует цитоплазматический фактор способный активировать М фазу. Позднее этот фактор был вторично обнаружен в экспериментах по переносу цитоплазмы между ооцитами лягушки, находящимися на различных стадиях развития, и был назван "фактором созревания" MPF (maturation promoting factor). Дальнейшее изучение MPF показало, что этот белковый комплекс детерминирует все события М-фазы. На рисунке показано, что распад ядерной мембраны, конденсация хромосом, сборка веретена, цитокинез регулируются MPF.

Митоз тормозится высокой температурой, высокими дозами ионизирующей радиации, действием растительных ядов. Один из таких ядов называется колхицин. С его помощью можно остановить митоз на стадии метафазной пластинки, что позволяет подсчитать число хромосом и дать каждой из них индивидуальную характеристику, т. е. провести кариотипирование.

Амитоз (от греч. а – отриц. частица и митоз) -прямоеделение интерфазного ядра путем перешнуровывания без преобразования хромосом. При амитозе не происходит равномерное расхождение хроматид к полюсам. И это деление не обеспечивает образование генетически равноценных ядер и клеток. По сравнению с митозом амитоз более кратковременный и экономичный процесс. Амитотическое деление может осуществляться несколькими способами. Наиболее распространенный тип амитоза – это перешнуровывание ядра на две части. Этот процесс начинается с разделения ядрышка. Перетяжка углубляется, и ядро разделяется надвое. После этого начинается разделение цитоплазмы, однако это происходит не всегда. Если амитоз ограничивается только делением ядра, то это приводит к образованию дву- и многоядерных клеток. При амитозе может также происходить почкование и фрагментация ядер.

Клетка, претерпевшая амитоз, в последующем не способна вступить в нормальный митотический цикл.

Амитоз встречается в клетках различных тканей растений и животных. У растений амитотическое деление довольно часто встречается в эндосперме, в специализирующихся клетках корешков и в клетках запасающих тканей. Амитоз также наблюдается в высокоспециализированных клетках с ослабленной жизнеспособностью или дегенерирующих, при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»