SLS-Технология. Селективное лазерное спекание (SLS)

Выборочное лазерное спекание (Selective Laser Sintering, SLS)

Этот метод появился примерно в то же время, что и SLA, и даже имеет с ним много общего, только вместо жидкости используется порошок с диаметром частиц 50-100 мкм, тонкими равномерными слоями распределяемый в горизонтальной плоскости, а потом лазерный луч спекает участки, подлежащие отверждению на данном слое модели.

Исходные материалы могут быть самые разные: металл, пластик, керамика, стекло, литейный воск. Порошок наносится и разравнивается по поверхности рабочего стола специальным валиком, который при обратном проходе удаляет излишки порошка. Затем работает мощный лазер, спекающий частицы друг с другом и с предыдущим слоем, после чего стол опускается на величину, равную высоте одного слоя. Для снижения мощности лазера, необходимой для спекания, порошок в рабочей камере предварительно нагревается почти до температуры плавления, а сам лазер работает в импульсном режиме, поскольку для спекания важнее пиковая мощность, а не длительность воздействия.

Частицы могут расплавляться полностью или частично (по поверхности). Незапеченный порошок, остающийся вокруг отвердевших слоев, служит поддержкой при создании нависающих элементов модели, поэтому нет необходимости в формировании специальных поддерживающих структур. Но этот порошок по окончании процесса необходимо удалить как из камеры, особенно если следующая модель будет создаваться из другого материала, так и из полостей уже изготовленной модели, что можно сделать лишь после ее полного остывания.

Зачастую требуется финишная обработка -- например, полировка, поскольку поверхность может получаться шероховатой или с видимой слоистостью. Кроме того, материал может использоваться не только чистый, но и в смеси с полимером или в виде частиц, покрытых полимером, остатки которого нужно удалить путем выжигания в специальной печи. Для металлов одновременно происходит заполнение возникающих пустот бронзой.

Поскольку речь идет о высоких температурах, необходимых для спекания, процесс происходит в азотной среде с малым содержанием кислорода. При работе с металлами это еще и предотвращает окисление.

Серийно выпускаемые установки SLS позволяют работать с достаточно большими объектами, до 55Ч55Ч75 см.

Габариты и вес самих установок, как и SLA, достаточно впечатляющие. Так, аппарат Formiga P100, изображенный на фото, при довольно скромных размерах изготавливаемых моделей (рабочая зона 20Ч25Ч33 см) имеет размеры 1,32Ч1,07Ч2,2 м при весе 600 кг, и это без учета таких опций, как установки для смешивания порошка и системы очистки-фильтрации. Причем работать P100 может только с пластиками (полиамид, полистирол).

Вариантами технологии являются:

a. Селективное лазерное плавление (Selective Laser Melting, SLM) , которое используется для работы с чистыми металлами без примесей полимера и позволяет создать готовый образец за один этап.

b. Электронно-лучевое плавление (Electron Beam Melting, EBM) с использованием электронного луча вместо лазера; эта технология требует работы в вакуумной камере, но позволяет использовать даже такие металлы, как титан.

Встречаются и такие названия, как Direct Metal Fabrication (DMF) , а также Direct Manufacturing .

Принтер SPRO 250 Direct Metal производства 3D Systems, который, как понятно из названия, может работать с металлами по технологии SLM, с рабочей камерой 25Ч24Ч32 см имеет размер 1,7Ч0,8Ч2 метра и вес 1225 кг. Заявленная скорость от 5 до 20 кубических сантиметров в час, и можно сделать вывод, что модель объемом со стакан будет изготавливаться минимум 10 часов.

  • · широкий спектр материалов, пригодных для использования;
  • · позволяет создавать очень сложные модели;
  • · скорость в среднем выше, чем у SLA, и может достигать 30-40 мм в час по вертикали;
  • · может использоваться не только для создания прототипов, но и для мелкосерийного производства, в т.?ч. ювелирных изделий;
  • · требуются мощный лазер и герметичная камера, в которой создается среда с малым содержанием кислорода;
  • · меньшее, чем у SLA, максимальное разрешение: минимальная толщина слоя 0,1-0,15 мм (в зависимости от материала может быть и немного менее 0,1 мм); по горизонтали, как и в SLA, точность определяется фокусировкой лазерного луча;
  • · требуется долгий подготовительный этап для прогрева порошка, а затем нужно ждать остывания полученного образца, чтобы можно было удалить остатки порошка;
  • · в большинстве случаев требуется финишная обработка.

Цена на установки SLS еще выше, чем SLA, и может достигать миллионов долларов. Однако отметим, что в феврале 2014 года истек срок патентов на технологию SLS, поэтому вполне можно спрогнозировать увеличение количества компаний, предлагающих подобную технику, а соответственно и заметное снижение цен. Тем не менее, вряд ли в ближайшие годы цены снизятся столь существенно, что SLS-печать станет доступной хотя бы малому бизнесу, не говоря уже о частных энтузиастах.

Поскольку материалы очень разнообразны, мы не приводим ориентировочных цен.

Технология DMLS

Прямое лазерное спекание металлов (DMLS) – технология аддитивного производства металлических изделий, разработанная компанией EOS из Мюнхена. DMLS зачастую путают со схожими технологиями выборочного лазерного спекания («Selective Laser Sintering» или SLS) и выборочной лазерной плавки («Selective Laser Melting» или SLM).

Процесс включает использование трехмерных моделей в формате STL в качестве чертежей для построения физических моделей. Трехмерная модель подлежит цифровой обработке для виртуального разделения на тонкие слои с толщиной, соответствующей толщине слоев, наносимых печатным устройством. Готовый «построечный» файл используется как набор чертежей во время печати. В качестве нагревательного элемента для спекания металлического порошка используются оптоволоконные лазеры относительно высокой мощности – порядка 200Вт. Некоторые устройства используют более мощные лазеры с повышенной скоростью сканирования (т.е. передвижения лазерного луча) для более высокой производительности. Как вариант, возможно повышение производительности за счет использования нескольких лазеров.

DMLS позволяет создавать цельные металлические детали сложной геометрической формы

Порошковый материал подается в рабочую камеру в количествах, необходимых для нанесения одного слоя. Специальный валик выравнивает поданный материал в ровный слой и удаляет излишний материал из камеры, после чего лазерная головка спекает частицы свежего порошка между собой и с предыдущим слоем согласно контурам, определенным цифровой моделью. После завершения вычерчивания слоя, процесс повторяется: валик подает свежий материал и лазер начинает спекать следующий слой. Привлекательной особенностью этой технологии является очень высокое разрешение печати – в среднем около 20 микрон. Для сравнения, типичная толщина слоя в любительских и бытовых принтерах, использующих технологию FDM/FFF , составляет порядка 100 микрон.

Другой интересной особенностью процесса является отсутствие необходимости построения опор для нависающих элементов конструкции. Неспеченный порошок не удаляется во время печати, а остается в рабочей камере. Таким образом, каждый последующий слой имеет опорную поверхность. Кроме того, неизрасходованный материал может быть собран из рабочей камеры по завершении печати и использован заново. DMLS производство можно считать фактически безотходным, что немаловажно при использовании дорогих материалов – например, драгоценных металлов.

Технология практически не имеет ограничений по геометрической сложности построения, а высокая точность исполнения минимизирует необходимость механической обработки напечатанных изделий.

Преимущества и недостатки

Технология DMLS обладает несколькими достоинствами по сравнению с традиционными производственными методами. Наиболее очевидным является возможность быстрого производства геометрически сложных деталей без необходимости механической обработки (т.н. «субтрактивных» методов – фрезеровки, сверления и пр.). Производство практически безотходно, что выгодно отличает DMLS от субтрактивных технологий. Технология позволяет создавать несколько моделей одновременно с ограничением лишь по размеру рабочей камеры. Построение моделей занимает порядка несколько часов, что несоизмеримо более выгодно, чем литейный процесс, который может занимать до нескольких месяцев с учетом полного производственного цикла. С другой стороны, детали, произведенные лазерным спеканием, не обладают монолитностью, а потому не достигают тех же показателей прочности, что и отлитые образцы, или детали, произведенные субтрактивными методами.


На данный момент установки DMLS применяются только в профессиональной среде из-за высокой стоимости

DMLS активно используется в промышленности ввиду возможности построения внутренних структур цельных деталей, недоступных по сложности традиционным методам производства. Детали с комплексной геометрией могут быть выполнены целиком, а не из составных частей, что благоприятно влияет на качество и стоимость изделий. Так как DMLS не требует специальных инструментов (например, литейных форм) и не производит большого количества отходов (как в случае с субтрактивными методами), производство мелкосерийных партий с помощью этой технологии намного выгодней, чем за счет традиционных методов.

Применение

Технология DMLS применяется для производства готовых изделий малого и среднего размера в различных отраслях, включая аэрокосмическую, стоматологическую, медицинскую и др. Типичный размер области построения существующих установок составляет 250х250х250мм, хотя технологических ограничений на размер не существует – это лишь вопрос стоимости устройства. DMLS используется для быстрого прототипирования, снижая время разработки новых продуктов, а также в производстве, позволяя сокращать себестоимость мелких партий и упрощать сборку изделий сложной геометрической формы.

Фотографии деталей ракетного двигателя Super Draco, опубликованные основателем компании Space X Илоном Маском

Северо-западный политехнический университет Китая использует DMLS системы для производства элементов конструкции самолетов. Исследования, проведенные EADS, также указывают на снижение себестоимости и отходов при использовании технологии DMLS для производства сложных конструкций в единичных экземплярах или мелкими партиями.

Материалы

В качестве расходных материалов могут использоваться практически любые металлы и сплавы в порошковой форме. На сегодняшний день успешно применяется нержавеющая сталь, кобальт-хромовые сплавы, титан и прочие материалы.

Одноклассники

3D печать – это выполнение ряда повторяющихся операций, связанных с созданием объёмных моделей путём нанесения на рабочий стол установки тонкого слоя расходных материалов , смещением рабочего стола вниз на высоту сформированного слоя и удалением с поверхности рабочего стола отработанных отходов. Циклы печати непрерывно следуют друг за другом: на предыдущий слой материалов наносится следующий слой, стол снова опускается и так повторяется до тех пор, пока на элеваторе (так называют рабочий стол, которым оснащён 3D принтер) не окажется готовая модель.

Существует несколько технологий 3D печати, которые отличаются друг от друга по типу прототипирующего материала и способам его нанесения. В настоящее время наибольшее распространение получили следующие технологии 3D печати: стереолитография, лазерное спекание порошковых материалов, технология струйного моделирования, послойная печать расплавленной полимерной нитью, технология склеивания порошков, ламинирование листовых материалов и УФ-облучение через фотомаску. Охарактеризуем перечисленные технологии подробнее.

Стереолитография

Стереолитография – она же Stereo Lithography Apparatus или сокращённо SLA благодаря низкой себестоимости готовых изделий получила наибольшее распространений среди технологий 3D печати.

Технология SLA состоит в следующем: сканирующая система направляет на фотополимер лазерный луч, под действием которого материал твердеет. В качестве фотополимера используется хрупкий и твёрдый полупрозрачный материал, который коробится под действием атмосферной влаги. Материал легко склеивается, обрабатывается и окрашивается. Рабочий стол находится в ёмкости с фотополимерной композицией. После прохождения лазерного луча и отверждения очередного слоя его рабочая поверхность смещается вниз на 0,025 мм – 0,3 мм.

SLA технология

Оборудование для SLA печати изготавливают компании F& S Stereolithographietechnik GmbH, 3DSystem, а также Институт проблем лазерных и информационных технологий РАН.

Ниже показаны шахматные фигуры, созданные методом SLA печати.

Шахматные фигуры, созданные методом SLA печати

Лазерное спекание порошковых материалов

Лазерное спекание порошковых материалов – оно же Selective Laser Sintering или просто SLS является единственной технологией 3D печати, которая может быть использована для изготовления металлических формообразующих для металлического и пластмассового литья. Пластмассовые прототипы обладают хорошими механическими свойствами, благодаря которым они моту быть использованы для изготовления полнофункциональных изделий.

В SLS печати используются материалы, близкие по своим свойствам к конструкционным маркам: металл, керамика, порошковый пластик. Порошковые материалы наносятся на поверхность рабочего стола и запекаются лазерным лучом в твёрдый слой, соответствующий сечению 3D модели и определяющий её геометрию.

SLS технология

Оборудование для SLS-печати изготавливают следующие заводы: 3D Systems, F& S Stereolithographietechnik GmbH, The ExOne Company / Prometal, EOS GmbH.

На рисунке представлена скульптурная модель «Так держать», изготовленная методом SLS печати.

Скульптурная модель «Так держать», изготовленная методом SLS печати, автор Лука Ионеску

Послойная печать расплавленной полимерной нитью

Послойная печать расплавленной полимерной нитью – она же Fused Deposition Modeling или просто FDM применяется для получения единичных изделий, приближенных по своим функциональным возможностям к серийным изделиям, а также для изготовления выплавляемых форм для литья металлов.

Технология FDM печати заключается в следующем: выдавливающая головка с контролируемой температурой разогревает до полужидкого состояния нити из ABC пластика, воска или поликарбоната, и с высокой точностью подаёт полученный термопластичный моделирующий материал тонкими слоями на рабочую поверхность 3D принтера. Слои наносятся друг на друга, соединяются между собой и отвердевают, постепенно формируя готовое изделие.

Технология FDM печати

В настоящее время 3D принтеры с технологией FDM печати изготавливаются компанией Stratasys Inc.

На картинке изображена модель, напечатанная 3D принтером с технологией FDM печати.

Модель, напечатанная 3D принтером с технологией FDM печати

Технология струйного моделирования

Технология моделирования или Ink Jet Modelling имеет следующие запатентованные подвиды: 3D Systems (Multi-Jet Modeling или MJM), PolyJet (Objet Geometries или PolyJet) и Solidscape (Drop-On-Demand-Jet или DODJet).

Перечисленные технологии функционируют по одному принципу, но каждая из них имеет свои особенности. Для печати используются поддерживающие и моделирующие материалы. К числу поддерживающих материалов чаще всего относят воск, а к числу моделирующих – широкий спектр материалов, близких по своим свойствам к конструкционным термопластам. Печатающая головка 3D принтера наносит поддерживающий и моделирующий материалы на рабочую поверхность, после чего производится их фотополимеризация и механическое выравнивание.

Технология струйного моделирования позволяет получить окрашенные и прозрачные модели с различными механическими свойствами, это могут быть как мягкие, резиноподобные изделия, так и твёрдые, похожие на пластики.

Технология струйного моделирования

Принтеры для 3D печати с использованием технологии струйного моделирования изготавливают следующие компании: Solidscape Inc, Objet Geometries Ltd, 3D Systems.

Технология склеивания порошков

– она же Binding powder by adhesives позволяет не просто создавать объёмные модели, но и раскрашивать их.

Принтеры с технологией binding powder by adhesives используют два вида материалов: крахмально-целлюлозный порошок, из которого формируется модель, и жидкий клей на водной основе, проклеивающий слои порошка. Клей поступает из печатающей головки 3D принтера, связывая между собой частицы порошка и формируя контур модели. После завершения печати излишки порошка удаляются. Чтобы придать модели дополнительную прочность, её пустоты заливаются жидким воском.

Технология склеивания порошков

Условные обозначения:

1-2 – ролик наносит тонкий слой порошка на рабочую поверхность; 3 – струйная печатающая головка печатает каплями связующей жидкости на слое пороша, локально укрепляя часть сплошного сечения; 4 – процесс 1-3 повторяется для каждого слоя до готовности модели, оставшийся порошок удаляется

В настоящее время 3D принтеры с технологией склеивания порошков изготавливаются компанией Z Corporation.

Ламинирование листовых материалов

Ламинирование листовых материалов – оно же Laminated Object Manufacturing или LOM предполагает изготовление 3D моделей из бумажных листов при помощи ламинирования. Контур очередного слоя будущей модели вырезается лазером, а ненужные обрезки режутся на небольшие квадратики, которые впоследствии удаляются из принтера. Структура готового изделия похожа на древесную, но боится влаги.

Технология ламинирования листовых материалов

До недавнего времени 3D принтеры для ламинирования листовых материалов производила компания Helisys Inc, но в настоящее время компания прекратила выпуск такого оборудования.

Объект, напечатанный на 3D принтере с технологией ламинирования листовых материалов, показан на фото ниже.

Модель, напечатанная 3D принтером с технологией LOM

Облучение ультрафиолетом через фотомаску

Облучение ультрафиолетом через фотомаску – оно же Solid Ground Curing или SGC предполагает создание готовых моделей из слоёв распыляемого на рабочую поверхность фоточувствительного пластика. После нанесения тонкого слоя пластика он через специальную фотомаску с изображением очередного сечения обрабатывается ультрафиолетовыми лучами. Неиспользованный материал удаляется при помощи вакуума, а оставшийся затвердевший материал повторно облучается жёстким ультрафиолетом. Полости готового изделия заполняются расплавленным воском, который служит для поддержки следующих слоёв. Перед нанесением последующего слоя фоточувствительного пластика предыдущий слой механически выравнивается.

В этом обзоре я попытался в популярной форме привести основные сведения о производстве металлических изделий методом лазерного аддитивного производства – сравнительно новом и интересном технологическом методе, возникшем в конце 80-х и ставшем в наши дни перспективной технологией для мелкосерийного или единичного производства в области медицины, самолето- и ракетостроения.

Кратко описать принцип работы установки для аддитивного производства с помощью лазерного излучения можно следующим образом. Устройство для нанесения и выравнивания слоя порошка снимает слой порошка с питателя и равномерным слоем распределяет его по поверхности подложки. После чего лазерный луч сканирует поверхность данного слоя порошка и путем оплавления или спекания формирует изделие. По окончанию сканирования порошкового слоя платформа с изготавливаемым изделием опускается на толщину наносимого слоя, а платформа с порошком поднимается, и процесс нанесения слоя порошка и сканирования повторяется. После завершения процесса платформа с изделием поднимается и очищается от неиспользованного порошка.

Одной из основных частей в установках аддитивного производства является лазерная система, в которой используются CO 2 , Nd:YAG, иттербий волоконный или дисковый лазеры. Установлено, что использование лазеров с длиной волны 1-1,1 мкм для нагрева металлов и карбидов предпочтительнее, поскольку они на 25-65% лучше поглощают генерируемое лазером излучение. В тоже время, использование CO 2 лазера с длиной волны 10,64 мкм наиболее лучше подходит для таких материалов, как полимеры и оксидная керамика. Более высокая абсорбционная способность позволяет увеличить глубину проплавления и в более широких пределах варьировать параметрами процесса. Обычно лазеры, используемые в аддитивном производстве, работают в непрерывном режиме. По сравнению с ними применение лазеров работающих в импульсном режиме и в модулированной добротности за счет их большой энергии импульса и короткой продолжительности импульса (наносекунды) даёт возможность улучшить прочность связи между слоями и уменьшить зону термического воздействия. В заключение можно отметить, что характеристики используемых лазерных систем лежат в таких пределах: мощность лазера – 50-500 Вт, скорость сканирования до 2 м/с, скорость позиционирования до 7 м/с, диаметр фокусированного пятна – 35-400 мкм.

Помимо лазера как источник нагрева порошка может быть использован электронно-лучевой нагрев. Этот вариант фирма Arcam предложила и реализовала в своих установках в 1997 г. Установка с электронно-лучевой пушкой характеризуется отсутствием подвижных частей, так как электронный луч фокусируется и направляется с помощью магнитного поля и дефлекторов, а создание в камере вакуума положительно сказывается на качестве изделий.

Одним из важных условий при аддитивном производстве является создание защитной среды предотвращающей окисление порошка. Для выполнения этого условия используют аргон или азот. Однако применение азота как защитного газа ограничено, что связанно с возможностью образования нитридов (например, AlN, TiN при изготовлении изделий из алюминиевых и титановых сплавов), которые приводят к понижению пластичности материала.

Методы лазерного аддитивного производства по особенностям процесса уплотнения материала можно разделить на селективное лазерное спекание (Selective Laser Sintering (SLS)), непрямое лазерное спекание металлов (Indirect Laser Metal Sintering (ILMS)), прямое лазерное спекание металлов (Direct Laser Metal Sintering (DLMS)) и селективное лазерное плавление (Selective Laser Melting (SLM)). В первом варианте уплотнение слоя порошка происходит за счет твердофазного спекания. Во втором – за счет пропитки связкой пористого каркаса ранее сформированного лазерным излучением. В основе прямого лазерного спекания металлов лежит уплотнение по механизму жидкофазного спекания за счет плавления легкоплавкого компонента в порошковой смеси. В последнем варианте уплотнение происходит за счет полного плавления и растекания расплава. Стоит отметить, что эта классификация не является универсальной, поскольку в одном типе процесса аддитивного производства могут проявляться механизмы уплотнения, которые характерны для других процессов. Например, при DLMS и SLM может наблюдаться твердофазное спекание, которое имеет место при SLS, тогда как при SLM может происходить жидкофазное спекание, которое более характерно для DLMS.

Селективное лазерное спекание (SLS)

Твердофазное селективное лазерное спекание не получило широкого распространения, поскольку для более полного протекания объемной и поверхностной диффузии, вязкого течения и других процессов, имеющих место при спекании порошка, требуется относительно длительная выдержка под лазерным излучением. Это приводит к длительной работе лазера и малой производительности процесса, что делает этот процесс экономически не целесообразным. Помимо этого, возникают сложности с поддержанием температуры процесса в интервале между точкой плавления и температурой твердофазного спекания. Преимуществом твердофазного селективного лазерного спекания является возможность использования более широкого круга материалов для изготовления изделий.

Непрямое лазерное спекание металлов (ILMS)

Процесс, получивший название «непрямое лазерное спекание металлов» был разработан компанией DTMcorp of Austin в 1995 г., которая с 2001 г. принадлежит компании 3D Systems. В ILMS процессе используют смесь порошка и полимера или порошок покрытый полимером, где полимер выступает в роли связки и обеспечивает необходимую прочность для проведения дальнейшей термической обработки. На стадии термической обработки проводится отгонка полимера, спекание каркаса и пропитка пористого каркаса металлом-связкой, в результате которой получается готовое изделие.

Для ILMS можно использовать порошки, как металлов, так и керамики или их смесей. Приготовление смеси порошка с полимером проводят механическим смешиванием, при этом содержание полимера составляет около 2-3% (по массе), а в случае использования порошка покрытым полимером, толщина слоя на поверхности частицы составляет около 5 мкм. В качестве связки используют эпоксидные смолы, жидкое стекло, полиамиды и другие полимеры. Температура отгонки полимера определяется температурой его плавления и разложения и в среднем составляет 400-650 o С. После отгонки полимера пористость изделия перед пропиткой составляет около 40%. При пропитке печь нагревают на 100-200 0 С выше точки плавления пропитывающего материала, поскольку с повышением температуры уменьшается краевой угол смачивания и понижается вязкость расплава, что благоприятно влияет на процесс пропитки. Обычно пропитку будущих изделий проводят в засыпке из оксида алюминия, которая играет роль поддерживающего каркаса, поскольку в период от отгонки полимера до образования прочных межчастичных контактов существует опасность разрушения или деформации изделия. Защиту от окисления организуют с помощью создания в печи инертной или восстановительной сред. Для пропитки можно использовать довольно разнообразные металлы и сплавы, которые удовлетворяют следующим условиям. Материал для пропитки должен характеризоваться полным отсутствием или незначительным межфазным взаимодействием, малым краевым углом смачивания и иметь температуру плавления ниже, чем у основы. Например, в случае если компоненты взаимодействую между собой, то в процессе пропитки могут происходить нежелательные процессы, такие как образование более тугоплавких соединений или твердых растворов, что может привести к остановке процесса пропитки или негативно сказаться на свойствах и размерах изделия. Обычно для пропитки металлического каркаса используют бронзу, при этом усадка изделия составляет 2-5%.

Одним из недостатков ILMS является отсутствие возможности регулировать в широких пределах содержание тугоплавкой фазы (материала основы). Поскольку её процентное содержание в готовом изделии определяется насыпной плотностью порошка, которая в зависимости от характеристик порошка может быть в три и более раза меньше теоретической плотности материала порошка.

Материалы и их свойства, используемые для ILMS

Прямое лазерное спекание металлов (DLMS)

Процесс прямого лазерного спекания металлов подобен ILMS, однако отличается тем, что вместо полимера используются сплавы или соединения с низкой температурой плавления, а также отсутствует такая технологическая операция, как пропитка. В основе создания концепции DMLS стояла немецкая компания EOS GmbH, которая в 1995 году создала коммерческую установку для прямого лазерного спекания порошковой системы сталь-никелевая бронза. Получение различных изделий методом DLMS основано на затекании образовавшегося расплава-связки в пустоты между частицами под действием капиллярных сил. При этом для успешного выполнения процесса в порошковую смесь добавляют соединения с фосфором, которые снижают поверхностное натяжение, вязкость и степень окисления расплава, тем самым улучшая смачиваемость. Порошок, используемый в качестве связки, обычно имеет меньший размер, чем порошок основы, поскольку это позволяет увеличить насыпную плотность порошковой смеси и ускорить процесс образования расплава.

Материалы и их свойства, используемые для DLMS компанией EOS GmbH

Селективное лазерное плавление (SLM)

Дальнейшее усовершенствование установок для аддитивного производства связано с появлением возможности использования более мощного лазера, меньшего диаметра фокусировочного пятна и нанесения более тонкого слоя порошка, что позволило использовать SLM для изготовления изделий из различных металлов и сплавов. Обычно полученные этим методом изделия имеют пористость 0-3%.
Как и в выше рассмотренных методах (ILMS, DMLS), большую роль в процессе изготовления изделий играет смачиваемость, поверхностное натяжение и вязкость расплава. Одним из факторов сдерживающим использование различных металлов и сплавов для SLM является эффект «образования шариков» или сфероидизация, который проявляется в виде формирования лежащих отдельно друг от друга капель, а не сплошной дорожки расплава. Причиной этого является поверхностное натяжение под действием, которого расплав стремится уменьшить свободную поверхностную энергию путем образования формы с минимальной площадью поверхности, т.е. шара. При этом в полоске расплава наблюдается эффект Марангони, который проявляется в виде конвективных потоков из-за градиента поверхностного натяжения как функции от температуры, и если конвективные потоки достаточно сильные, то полоска расплава разделяется на отдельные капли. Также капля расплава под действием поверхностного натяжения затягивает в себя близлежащие частицы порошка, что приводит к образованию ямки вокруг капли и, в конечном счете, к увеличению пористости.


Сфероидизация стали M3/2 при неоптимальных режимах SLM

Эффекту сфероидизации также способствует наличие кислорода, который растворяясь в металле, повышает вязкость расплава, что приводит к ухудшению растекания и смачиваемости расплавом ниже лежащего слоя. По выше перечисленным причинам не удается получить изделия из таких металлов как олово, медь, цинк, свинец.

Стоит отметить, что формирование качественной полоски расплава связано с поиском оптимальной области параметров процесса (мощности лазерного излучения и скорости сканирования), которая обычно достаточно узкая.


Влияние параметров SLM золота на качество формируемых слоев

Еще одним фактором, влияющим на качество изделий, является появление внутренних напряжений, наличие и величина которых зависит от геометрии изделия, скорости нагрева и охлаждения, коэффициента термического расширения, фазовых и структурных изменений в металле. Значительные внутренние напряжения могут приводить к деформации изделий, образованию микро- и макротрещин.

Частично уменьшить негативное влияние выше упомянутых факторов можно путем использования нагревательных элементов, которые обычно располагаются внутри установки вокруг подложки или питателя с порошком. Нагрев порошка также позволяет удалить адсорбированную влагу с поверхности частиц и тем самым уменьшить степень окисления.

При селективном лазерном плавлении таких металлов как алюминий, медь, золото не маловажным вопросом является их большая отражательная способность, что обуславливает необходимость использования мощной лазерной системы. Но повышение мощности лазерного луча может негативно сказаться на точности размеров изделия, поскольку при чрезмерном нагреве порошок будет плавиться и спекаться за пределами лазерного пятна за счет теплообмена. Большая мощность лазера также может привести к изменению химического состава в результате испарения металла, что особенного характерно для сплавов содержащих легкоплавкие компоненты и имеющих большую упругость паров.

Механические свойства материалов полученных методом SLM (компания EOS GmbH)

Если изделие, полученное одним из выше рассмотренных методов, имеет остаточную пористость, то в случае необходимости применяют дополнительные технологические операции для повышения его плотности. Для этой цели используют методы порошковой металлургии – спекание или горячее изостатическое прессование (ГИП). Спекание позволяет устранить остаточную пористость и повысить физико-механические свойства материала. При этом следует подчеркнуть, что формируемые свойства материала в процессе спекания определяются составом и природой материала, размером и количеством пор, наличием дефектов и другими многочисленными факторами. ГИП представляет собой процесс, в котором заготовка, помещенная в газостат, уплотняется под действием высокой температуры и всестороннего сжатия инертным газом. Рабочее давление и максимальная температура, достигаемая газостатом, зависит от его конструкции и объёма. Например, газостат, имеющий размеры рабочей камеры 900х1800 мм, способен развить температуру 1500 o С и давление 200 МПа. Использование ГИП для устранения пористости без применения герметичной оболочки возможно, если пористость составляет не более 8%, поскольку при большем её значении газ через поры будет попадать внутрь изделия, препятствуя тем самым уплотнению. Исключить проникновение внутрь изделия газа можно путём изготовления стальной герметичной оболочки повторяющую форму поверхности изделия. Однако изделия, получаемые аддитивным производством, в основном имеют сложную форму, что делает невозможным изготовление такой оболочки. В таком случае для уплотнения можно использовать вакуумированный герметичный контейнер, в котором изделие помещено в сыпучую среду (Al 2 O 3 , BN гекс, графит), передающей давление на стенки изделия.

После аддитивного производства методом SLM материалы характеризуются анизотропией свойств, повышенной прочностью и пониженной пластичностью из-за наличия остаточных напряжений. Для снятия остаточных напряжений, получения более равновесной структуры, повышения вязкости и пластичности материала проводят отжиг.

Согласно ниже приведенным данным, можно отметить, что изделия, полученные селективным лазерным плавлением, в некоторых случаях прочнее литых на 2-12%. Это можно объяснить малым размером зерен и микроструктурных составляющих, которые образуются в результате быстрого охлаждения расплава. Быстрое переохлаждение расплава значительно увеличивает число зародышей твердой фазы и уменьшает их критический размер. При этом быстро растущие на зародышах кристаллы, соприкасаясь друг с другом, начинают препятствовать своему дальнейшему росту, тем самым формируя мелкозернистую структуру. Зародышами кристаллизации обычно являются неметаллические включения, пузырьки газов или выделившиеся из расплава частицы при их ограниченной растворимости в жидкой фазе. И в общем случае, согласно соотношению Холла-Петча, с уменьшением размера зерна увеличивается прочность металла благодаря развитой сети границ зерен, которая является эффективным барьером для движения дислокаций. Следует отметить, что в силу различного химического состава сплавов и их свойств, условий проведения SLM, выше упомянутые явления, имеющие место при остывании расплава, проявляются с различной интенсивностью.

Механические свойства материалов, полученных SLM и литьем

Конечно, это не значит, что изделия, полученные селективным лазерным плавлением лучше изделий полученных традиционными способами. Благодаря большой гибкости традиционных способов получения изделий можно в широких пределах варьировать свойствами изделия. Например, используя такие методы как изменение температурных условий кристаллизации, легирование и введение в расплав модификаторов, термоциклирование, порошковой металлургии, термомеханическая обработка и др., можно добиться значительного повышения прочностных свойств металлов и сплавов.

Особый интерес представляет использование углеродистой стали для аддитивного производства, как дешевого и обладающего высоким комплексом механических свойств материала. Известно, что с повышением содержания углерода в стали улучшается её жидкотекучесть и смачиваемость. Благодаря этому возможно получение простых изделий содержащих 0,6-1% C с плотностью 94-99%, при этом в случае использования чистого железа плотность составляет около 83%. В процессе селективного лазерного плавления углеродистой стали дорожка расплава при быстром охлаждении подвергается закалке и отпуску на структуру троостита или сорбита. При этом, из-за термических напряжений и структурных превращений, в металле могут возникать значительные напряжения, которые приводят к поводке изделия или к образованию трещин. Также важное значение имеет геометрия изделия, поскольку резкие переходы по сечению, малые радиусы закругления и острые кромки являются причиной образования трещин. Если после «печати» сталь не обладает заданным уровнем механических свойств и её необходимо подвергнуть дополнительной термообработке, то при этом необходимо будет считаться с ранее отмеченными ограничениями по форме изделия, чтобы избежать появления дефектов закалки. Это в некоторой степени снижает перспективность использования SLM для углеродистых сталей.
При получении изделий традиционными способами одним из путей избежать трещин и поводки при закалке изделий сложной формы является использование легированных сталей, в которых присутствующие легирующие элементы помимо повышения механических и физико-химических свойств, задерживают превращение аустенита при охлаждении, в результате чего уменьшается критическая скорость закалки и увеличивается прокаливаемость легированной стали. Благодаря малой критической скорости закалки, сталь можно калить в масле или на воздухе, что снижает уровень внутренних напряжений. Однако по причине быстрого отвода тепла, невозможности регулирования скорости охлаждения и наличия углерода в легированной стали этот прием не позволяет избежать появления значительных внутренних напряжений при селективном лазерном плавлении.

В связи с выше отмеченными особенностями, для SLM используются мартенситно-страющие стали (MS 1, GP 1, PH 1), в которых упрочнение и повышение твердости достигается за счет выделения дисперсных интерметаллидных фаз при термообработке. Эти стали содержат малое количество углерода (сотые проценты), в результате чего образовавшаяся при быстром охлаждении решетка мартенсита характеризуется малой степенью искаженности и следственно имеет низкую твердость. Малая твердость и высокая пластичность мартенсита обеспечивает релаксацию внутренних напряжений при закалке, а высокое содержание легирующих элементов позволяет прокаливать сталь на большую глубину почти при любых скоростях охлаждения. Благодаря этому с помощью SLM можно изготавливать и подвергать термообработке сложные изделия без опасения образования трещин или коробления. Кроме мартенситно-стареющих сталей могут использоваться некоторые аустенитные нержавеющие стали, например 316L.

В заключение можно отметить, что сейчас усилия ученых и инженеров направлены на более детальное изучение влияния параметров процесса на структуру, механизм и особенности уплотнения различных материалов под действием лазерного излучения с целью улучшения механических свойств и увеличения номенклатуры материалов пригодных для лазерного аддитивного производства.

Технология SLS (Selective Laser Sintering) — селективное лазерное спекание, является одной из технологий производства изделий любой геометрии из порошкообразного материала. Свое развитие, как и другие подобные методы, технология начала в 70-х годах прошлого века.

Так, в 1971 году француз Пьер Сиро (Pierre Ciraud) подал заявку на патент, описывающая способ изготовления изделий из порошкового материала, основанный на отверждении и скреплении порошка под воздействием сфокусированного луча энергии.

Представленная технология имеет малое отношение к любой из сегодняшних коммерческих аддитивных технологий, но она стала предшественником более поздних разработок технологии лазерной обработки материалов.

А в 1979 году, изобретатель по имени Росс Хоушолдер (Ross F. Housholder) подал заявку на патент, с описанием системы и метода создания трехмерного изделия слой за слоем, имеющего сходство с будущими технологиями лазерного спекания. Но из-за чрезвычайно высокой стоимости лазеров в то время, Хоушолдер смог только частично протестировать свой метод.

Коммерчески успешная технологии селективного лазерного спекания была разработана и запатентована студентом Техасского Университета в Остине Карлом Декардом (Carl Deckard) и его научным руководителем, профессором машиностроения Джо Биманом (Joe Beaman) в середине 1980-х годов при поддержке агентства DARPA (агентство передовых оборонных исследовательских проектов) и агентства NSF (независимое агентство при правительстве США, отвечающее за развитие науки и технологий).

Суть технологии заключалась в применении метода производства трехмерного объекта из металлического порошка под воздействием луча лазера , когда частицы порошка нагреваются лишь до оплавления внешнего слоя, достаточного для их скрепления. Процесс необходимо проводить в герметической емкости, заполненной инертным газом, чтобы избежать возгорания порошка и утечки токсичных газов, выделяющихся при твердотельном синтезе.

К сведению: термин «спекание» относится к процессу, с помощью которого объекты создаются из порошков с использованием механизма диффузии атомов. Диффузия атомов происходит в любом материале при температуре выше абсолютного нуля, но процесс происходит гораздо быстрее при более высоких температурах, поэтому спекание вызывается нагреванием порошка при достаточно высоких температурах. Поскольку в первых устройствах для построения 3D-изделий применялся порошок ABS пластика, термин «спекание» наиболее технически-точно отражал происходящие процессы. Однако, когда в установках начали использовать кристаллические и полу-кристаллические материалы, такие как нейлон и металлы, которые растекаются в процессе построения изделий, название «селективное лазерное спекание» уже хорошо зарекомендовало себя и осталось, несмотря на то, что стало неправильным.

В технологии SLS применяются многокомпонентные порошки или порошковые смеси из разных химических материалов, в отличие от технологии DMLS (), где в основном используются однокомпонентные порошки.

В первом прототипе устройства получить готовое изделие не удалось, так как в нем использовался лазер мощностью всего 2 Ватта. Перепроверив математические расчеты, Карл Декард выяснил, что при переносе физической константы с одной страницы на другую, ошибся почти на 3 порядка. После чего, лазер был заменен на более мощный — 100 Bт твердотельный лазер, где качестве активной среды используется алюмо-иттриевый гранат. Позднее стали применяться лазеры на диоксиде углерода.

В конце 1986 года Декард совместно с заместителем декана, доктором Полом Ф. МакКлюром (Paul F. McClure) и бизнесменом Гарольдом Блэром (Harold Blair) основывают компанию Nova Automation, которая в феврале 1989 года была переименована в DTM corp.

Первые установки разработанные в DTM corp назывались Mod A и Mod B, а первая партия из 4 установок была выпущена под названием 125S. В 2001 году DTM corp была куплена компанией 3D Systems, создавшей конкурирующую технологию — .

Компания 3D Systems была и остается одним из лидеров аддитивного производства, а получение прав на технологию селективного лазерного спекания — важная веха для развития коммерческого применения аддитивных технологий. В настоящий момент компания 3D Systems является одним из лидеров на рынке 3D-печати, наряду с такими компаниями как EOS GmbH и Stratasys Inc.

Компания EOS, после продажи 3D Systems в 1997 году своего направления специализирующегося на выпуске SLA оборудования, сфокусировалась на разработке оборудования использующего технологию SLM (селективное лазерное плавление).

Материалы:

  • металлические порошки,
  • пластиковые порошки,
  • нейлон (чистый, стеклонаполненный или с другими наполнителями),
  • керамика,
  • стекло (кварцевый песок).

Основные области применения:

  • Готовые продукты, печатающиеся индивидуально или небольшими сериями
  • Прототипы деталей и частей машин и механизмов
  • Инструменты для производства
  • Преcс-формы

Отрасли применения:

  • Аэрокосмическая отрасль (производство титановых форсунок и лопастей для турбин)
  • Автомобильная отрасль и машиностроение
  • Нефтяная отрасль
  • Энергетика
  • Медицина (слуховые аппараты, стоматология)