Как решить квадратное неравенство с помощью графика. "решение квадратного неравенства с помощью графика квадратичной функции"

Пусть f(x,y) и g(x, y) - два выражения с переменными х и у и областью определения Х . Тогда неравенства вида f(x, y) > g(x, y) или f(x, y) < g(x, y) называется неравенством с двумя переменными .


Значение переменных х, у из множества Х , при которых неравенство обращается в истинное числовое неравенство, называется его решением и обозначается (x, y) . Решить неравенство - это значит найти множество таких пар.


Если каждой паре чисел (x, y) из множества решений неравенства поставить в соответствие точку М(x, y) , получим множество точек на плоскости, задаваемое этим неравенством. Его называют графиком данного неравенства . График неравенства обычно является областью на плоскости.


Чтобы изобразить множество решений неравенства f(x, y) > g(x, y) , поступают следующим образом. Сначала заменяют знак неравенства знаком равенства и находят линию, имеющую уравнение f(x,y) = g(x,y) . Эта линия делит плоскость на несколько частей. После этого достаточно взять в каждой части по одной точке и проверить, выполняется ли в этой точке неравенство f(x, y) > g(x, y) . Если оно выполняется в этой точке, то оно будет выполняться и во всей части, где лежит эта точка. Объединяя такие части, получаем множество решений.


Задача. y > x .


Решение. Сначала заменим знак неравенства знаком равенства и построим в прямоугольной системе координат линию, имеющую уравнение y = x .


Эта линия делит плоскость на две части. После этого возьмем в каждой части по одной точке и проверим, выполняется ли в этой точке неравенство y > x .


Задача. Решить графически неравенство
х 2 + у 2 £ 25.
















Рис. 18.



Решение. Сначала заменим знак неравенства знаком равенства и проведем линию х 2 + у 2 = 25. Это окружность с центром в начале координат и радиусом 5. Полученная окружность делит плоскость на две части. Проверяя выполнимость неравенства х 2 + у 2 £ 25 в каждой части, получаем, что графиком является множество точек окружности и части плоскости внутри окружности.

Пусть даны два неравенства f 1(x, y) > g 1(x, y) и f 2(x, y) > g 2(x, y) .

Системы совокупностей неравенств с двумя переменными

Система неравенств представляет собой конъюнкцию этих неравенств. Решением системы является всякое значение (x, y) , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Совокупность неравенств представляет собой дизъюнкцию этих неравенств. Решением совокупности является всякое значение (x, y) , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Задача. Решить графически систему неравенств


Решение. у = х и х 2 + у 2 = 25. Решаем каждое неравенство системы.


Графиком системы будет множество точек плоскости, являющихся пересечением (двойная штриховка) множеств решений первого и второго неравенств.


Задача. Решить графически совокупность неравенств



















Решение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х + 4 и х 2 + у 2 = 16. Решаем каждое неравенство совокупности. Графиком совокупности будет множество точек плоскости, являющихся объединением множеств решений первого и второго неравенств.

Упражнения для самостоятельной работы


1. Решите графически неравенства: а) у > 2x ; б) у < 2x + 3;


в) x 2 + y 2 > 9; г) x 2 + y 2 £ 4.


2. Решите графически системы неравенств:


а) в)

Цели:

1. Повторить знания о квадратичной функции.

2. Познакомиться с методом решения квадратного неравенства на основе свойств квадратичной функции.

Оборудование: мультимедиа, презентация “Решение квадратных неравенств”, карточки для самостоятельной работы, таблица “Алгоритм решения квадратного неравенства”, листы контроля с копировальной бумагой.

ХОД УРОКА

I. Организационный момент (1 мин).

II. Актуализация опорных знаний (10 мин).

1. Построение графика квадратичной функции у=х 2 -6х+8 <Рисунок 1. Приложение >

  • определение направления ветвей параболы;
  • определение координат вершины параболы;
  • определение оси симметрии;
  • определение точек пересечения с осями координат;
  • нахождение дополнительных точек.

2. Определить по чертежу знак коэффициента a и количество корней уравнения ах 2 +вх+с=0. <Рисунок 2. Приложение >

3. По графику функции у=х 2 -4х+3 определить:

  • Чему равны нули функции;
  • Найти промежутки, на которых функция принимает положительные значения;
  • Найти промежутки, на которых функция принимает отрицательные значения;
  • При каких значениях х функция возрастает, а при каких убывает? <Рисунок 3>

4. Изучение новых знаний (12 мин.)

Задача 1: Решить неравенство: х 2 +4х-5> 0.

Неравенству удовлетворяют значения х, при которых значения функции у=х 2 +4х-5 равны нулю или положительны, то есть те значения х при которых точки параболы лежат на оси ох или выше этой оси.

Построим график функции у=х 2 +4х-5.

С осью ох: Х 2 +4х-5=0. По теореме Виета: х 1 =1, х 2 =-5. Точки(1;0),(-5;0).

С осью оу: у(0)=-5. Точка (0;-5).

Дополнительные точки: у(-1)=-8, у(2)=7. <Рисунок 4>

Итог: Значения функции положительны и равны нулю (неотрицательны) при

  • Необходимо ли каждый раз для решения неравенства подробно строить график квадратичной функции?
  • Нужно ли находить координаты вершины параболы?
  • А что важно? (а, х 1 ,х 2)

Вывод: Для решения квадратного неравенства достаточно определить нули функции, направление ветвей параболы и построить эскиз графика.

Задача 2: Решить неравенство: х 2 -6х+8< 0.

Решение: Определим корни уравнения х 2 -6х+8=0.

По теореме Виета: х 1 =2, х 2 =4.

а>0 – ветви параболы направлены вверх.

Построим эскиз графика. <Рисунок 5>

Отметим знаками “+” и “–” интервалы, на которых функция принимает положительные и отрицательные значения. Выберем необходимый нам интервал.

Ответ: Х€.

5. Закрепление нового материала (7 мин).

№ 660 (3). Ученик решает на доске.

Решить неравенство-х 2 -3х-2<0.

Х 2 -3х-2=0; х 2 +3х+2=0;

корни уравнения: х 1 =-1, х 2 =-2.

а<0 – ветви вниз. <Рисунок 6>

№ 660 (1) - Работа со скрытой доской.

Решить неравенство х 2 -3х+2< 0.

Решение: х 2 -3х+2=0.

Найдем корни: ; х 1 =1, х 2 =2.

а>0 – ветви вверх. Строим эскиз графика функции. <Рисунок 7>

Алгоритм:

  1. Найти корни уравнения ах 2 +вх+с=0.
  2. Отметить их на координатной плоскости.
  3. Определить направление ветвей параболы.
  4. Построить эскиз графика.
  5. Отметить знаками “+” и “ - ”, интервалы на которых функция принимает положительные и отрицательные значения.
  6. Выбрать необходимый интервал.

6. Самостоятельная работа (10 мин.).

(Прием - копировальная бумага).

Лист-контроль подписывается и сдается учителю для проверки и определения коррекции.

Самопроверка по доске.

Дополнительное задание:

№ 670. Найти значения х, при которых функция принимает значения не большие нуля: у=х 2 +6х-9.

7. Домашнее задание (2 мин).

№ 660 (2, 4), № 661 (2, 4).

Заполнить таблицу:

D Неравенство a Чертеж Решение
D>0 ах 2 +вх+с> 0 a>0
D>0 ах 2 +вх+с> 0 a<0
D>0 ах 2 +вх+с< 0 a>0
D>0 ах 2 +вх+с< 0 a<0

8. Итог урока (3 мин).

  1. Воспроизведите алгоритм решения неравенств.
  2. Кто справился с работой на отлично?
  3. Что показалось сложным?

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ?, либо min(f)= -?.

2. Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f (4; 1)=19 - максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -? до +? прямые f=a смещаются по вектору нормали. Если при таком перемещении линии уровня существует некоторая точка X - первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X) - минимум f на множестве ABCDE. Если X - последняя точка пересечения линии уровня и множества ABCDE то f(X) - максимум на множестве допустимых решений. Если при а>-? прямая f=a пересекает множество допустимых решений, то min(f)= -?. Если это происходит при а>+?, то max(f)=+ ?.

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Графический метод является одним из основных методов решения квадратных неравенств. В статье мы приведем алгоритм применения графического метода, а затем рассмотрим частные случаи на примерах.

Суть графического метода

Метод применим для решения любых неравенств, не только квадратных. Суть его вот в чем: правую и левую части неравенства рассматривают как две отдельные функции y = f (x) и y = g (x) , их графики строят в прямоугольной системе координат и смотрят, какой из графиков располагается выше другого, и на каких промежутках. Оцениваются промежутки следующим образом:

Определение 1

  • решениями неравенства f (x) > g (x) являются интервалы, где график функции f выше графика функции g ;
  • решениями неравенства f (x) ≥ g (x) являются интервалы, где график функции f не ниже графика функции g ;
  • решениями неравенства f (x) < g (x) являются интервалы, где график функции f ниже графика функции g ;
  • решениями неравенства f (x) ≤ g (x) являются интервалы, где график функции f не выше графика функции g ;
  • абсциссы точек пересечения графиков функций f и g являются решениями уравнения f (x) = g (x) .

Рассмотрим приведенный выше алгоритм на примере. Для этого возьмем квадратное неравенство a · x 2 + b · x + c < 0 (≤ , > , ≥) и выведем из него две функции. Левая часть неравенства будет отвечать y = a · x 2 + b · x + c (при этом f (x) = a · x 2 + b · x + c) , а правая y = 0 (при этом g (x) = 0).

Графиком первой функции является парабола, второй прямая линия, которая совпадает с осью абсцисс О х. Проанализируем положение параболы относительно оси О х. Для этого выполним схематический рисунок.

Ветви параболы направлены вверх. Она пересекает ось О х в точках x 1 и x 2 . Коэффициент а в данном случае положительный, так как именно он отвечает за направление ветвей параболы. Дискриминант положителен, что указывает на наличие двух корней у квадратного трехчлена a · x 2 + b · x + c . Корни трехчлена мы обозначили как x 1 и x 2 , причем приняли, что x 1 < x 2 , так как на оси О х изобразили точку с абсциссой x 1 левее точки с абсциссой x 2 .

Части параболы, расположенные выше оси О х обозначим красным, ниже – синим. Это позволит нам сделать рисунок более наглядным.

Выделим промежутки, которые соответствуют этим частям и отметим их на рисунке полями определенного цвета.

Красным мы отметили промежутки (− ∞ , x 1) и (x 2 , + ∞) , на них парабола выше оси О х. Они являются a · x 2 + b · x + c > 0 . Синим мы отметили промежуток (x 1 , x 2) , который является решением неравенства a · x 2 + b · x + c < 0 . Числа x 1 и x 2 будут отвечать равенству a · x 2 + b · x + c = 0 .

Сделаем краткую запись решения. При a > 0 и D = b 2 − 4 · a · c > 0 (или D " = D 4 > 0 при четном коэффициенте b) мы получаем:

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является (− ∞ , x 1) ∪ (x 2 , + ∞) или в другой записи x < x 1 , x > x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является (− ∞ , x 1 ] ∪ [ x 2 , + ∞) или в другой записи x ≤ x 1 , x ≥ x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c < 0 является (x 1 , x 2) или в другой записи x 1 < x < x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≤ 0 является [ x 1 , x 2 ] или в другой записи x 1 ≤ x ≤ x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a · x 2 + b · x + c , причем x 1 < x 2 .

На данном рисунке парабола касается оси O х только в одной точке, которая обозначена как x 0 a > 0 . D = 0 , следовательно, квадратный трехчлен имеет один корень x 0 .

Парабола расположена выше оси O х полностью, за исключением точки касания координатной оси. Обозначим цветом промежутки (− ∞ , x 0) , (x 0 , ∞) .

Запишем результаты. При a > 0 и D = 0 :

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является (− ∞ , x 0) ∪ (x 0 , + ∞) или в другой записи x ≠ x 0 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является (− ∞ , + ∞) или в другой записи x ∈ R ;
  • квадратное неравенство a · x 2 + b · x + c < 0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси O x );
  • квадратное неравенство a · x 2 + b · x + c ≤ 0 имеет единственное решение x = x 0 (его дает точка касания),

где x 0 - корень квадратного трехчлена a · x 2 + b · x + c .

Рассмотрим третий случай, когда ветви параболы направлены вверх и не касаются оси O x . Ветви параболы направлены вверх, что означает, что a > 0 . Квадратный трехчлен не имеет действительных корней, так как D < 0 .

На графике нет интервалов, на которых парабола была бы ниже оси абсцисс. Это мы будем учитывать при выборе цвета для нашего рисунка.

Получается, что при a > 0 и D < 0 решением квадратных неравенств a · x 2 + b · x + c > 0 и a · x 2 + b · x + c ≥ 0 является множество всех действительных чисел, а неравенства a · x 2 + b · x + c < 0 и a · x 2 + b · x + c ≤ 0 не имеют решений.

Нам осталось рассмотреть три варианта, когда ветви параболы направлены вниз. На этих трех вариантах можно не останавливаться подробно, так как при умножении обеих частей неравенства на − 1 мы получаем равносильное неравенство с положительным коэффициентом при х 2 .

Рассмотрение предыдущего раздела статьи подготовило нас к восприятию алгоритма решения неравенств с использованием графического способа. Для проведения вычислений нам необходимо будет каждый раз использовать чертеж, на котором будет изображена координатная прямая O х и парабола, которая отвечает квадратичной функции y = a · x 2 + b · x + c . Ось O у мы в большинстве случаев изображать не будем, так как для вычислений она не нужна и будет лишь перегружать чертеж.

Для построения параболы нам необходимо будет знать две вещи:

Определение 2

  • направление ветвей, которое определяется значением коэффициента a ;
  • наличие точек пересечения параболы и оси абсцисс, которые определяются значением дискриминанта квадратного трехчлена a · x 2 + b · x + c .

Точки пересечения и касания мы будет обозначать обычным способом при решении нестрогих неравенств и пустыми при решении строгих.

Наличие готового чертежа позволяет перейти к следующему шагу решения. Он предполагает определение промежутков, на которых парабола располагается выше или ниже оси O х. Промежутки и точки пересечения и являются решением квадратного неравенства. Если точек пересечения или касания нет и нет интервалов, то считается, что заданное в условиях задачи неравенство не имеет решений.

Теперь решим несколько квадратных неравенств, используя приведенный выше алгоритм.

Пример 1

Необходимо решить неравенство 2 · x 2 + 5 1 3 · x - 2 графическим способом.

Решение

Нарисуем график квадратичной функции y = 2 · x 2 + 5 1 3 · x - 2 . Коэффициент при x 2 положительный, так как равен 2 . Это значит, что ветви параболы будут направлены вверх.

Вычислим дискриминант квадратного трехчлена 2 · x 2 + 5 1 3 · x - 2 для того, чтобы выяснить, имеет ли парабола с осью абсцисс общие точки. Получаем:

D = 5 1 3 2 - 4 · 2 · (- 2) = 400 9

Как видим, D больше нуля, следовательно, у нас есть две точки пересечения: x 1 = - 5 1 3 - 400 9 2 · 2 и x 2 = - 5 1 3 + 400 9 2 · 2 , то есть, x 1 = − 3 и x 2 = 1 3 .

Мы решаем нестрогое неравенство, следовательно проставляем на графике обычные точки. Рисуем параболу. Как видите, рисунок имеет такой же вид как и в первом рассмотренном нами шаблоне.

Наше неравенство имеет знак ≤ . Следовательно, нам нужно выделить промежутки на графике, на которых парабола расположена ниже оси O x и добавить к ним точки пересечения.

Нужный нам интервал − 3 , 1 3 . Добавляем к нему точки пересечения и получаем числовой отрезок − 3 , 1 3 . Это и есть решение нашей задачи. Записать ответ можно в виде двойного неравенства: − 3 ≤ x ≤ 1 3 .

Ответ: − 3 , 1 3 или − 3 ≤ x ≤ 1 3 .

Пример 2

− x 2 + 16 · x − 63 < 0 графическим методом.

Решение

Квадрат переменной имеет отрицательный числовой коэффициент, поэтому ветви параболы будут направлены вниз. Вычислим четвертую часть дискриминанта D " = 8 2 − (− 1) · (− 63) = 64 − 63 = 1 . Такой результат подсказывает нам, что точек пересечения будет две.

Вычислим корни квадратного трехчлена: x 1 = - 8 + 1 - 1 и x 2 = - 8 - 1 - 1 , x 1 = 7 и x 2 = 9 .

Получается, что парабола пересекает ось абсцисс в точках 7 и 9 . Отметим эти точки на графике пустыми, так как мы работаем со строгим неравенством. После этого нарисуем параболу, которая пересекает ось O х в отмеченных точках.

Нас будут интересовать промежутки, на которых парабола располагается ниже оси O х. Отметим эти интервалы синим цветом.

Получаем ответ: решением неравенства являются промежутки (− ∞ , 7) , (9 , + ∞) .

Ответ: (− ∞ , 7) ∪ (9 , + ∞) или в другой записи x < 7 , x > 9 .

В тех случаях, когда дискриминант квадратного трехчлена равен нулю, необходимо внимательно подходить к вопросу о том, стоит ли включать в ответ абсциссы точки касания. Для того, чтобы принять правильное решение, необходимо учитывать знак неравенства. В строгих неравенствах точка касания оси абсцисс не является решением неравенства, в нестрогих является.

Пример 3

Решите квадратное неравенство 10 · x 2 − 14 · x + 4 , 9 ≤ 0 графическим методом.

Решение

Ветви параболы в данном случае будут направлены вверх. Она будет касаться оси O х в точке 0 , 7 , так как

Построим график функции y = 10 · x 2 − 14 · x + 4 , 9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0 , 7 , так как D " = (− 7) 2 − 10 · 4 , 9 = 0 , откуда x 0 = 7 10 или 0 , 7 .

Поставим точку и нарисуем параболу.

Мы решаем нестрогое неравенство со знаком ≤ . Следовательно. Нас будут интересовать промежутки, на которых парабола располагается ниже оси абсцисс и точка касания. На рисунке нет интервалов, которые удовлетворяли бы нашим условиям. Есть лишь точка касания 0 , 7 . Это и есть искомое решение.

Ответ: Неравенство имеет только одно решение 0 , 7 .

Пример 4

Решите квадратное неравенство – x 2 + 8 · x − 16 < 0 .

Решение

Ветви параболы направлены вниз. Дискриминант равен нулю. Точка пересечения x 0 = 4 .

Отмечаем точку касания на оси абсцисс и рисуем параболу.

Мы имеем дело со строгим неравенством. Следовательно, нас интересуют интервалы, на которых парабола расположена ниже оси O х. Отметим их синим.

Точка с абсциссой 4 не является решением, так как в ней парабола не расположена ниже оси O x . Следовательно, мы получаем два интервала (− ∞ , 4) , (4 , + ∞) .

Ответ: (− ∞ , 4) ∪ (4 , + ∞) или в другой записи x ≠ 4 .

Не всегда при отрицательном значении дискриминанта неравенство не будет иметь решений. Есть случаи, когда решением будет являться множество всех действительных чисел.

Пример 5

Решите квадратное неравенство 3 · x 2 + 1 > 0 графическим способом.

Решение

Коэффициент а положительный. Дискриминант отрицательный. Ветви параболы будут направлены вверх. Точек пересечения параболы с осью O х нет. Обратимся к рисунку.

Мы работаем со строгим неравенством, которое имеет знак > . Это значит, что нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это как раз тот случай, когда ответом является множество всех действительный чисел.

Ответ: (− ∞ , + ∞) или так x ∈ R .

Пример 6

Необходимо найти решение неравенства − 2 · x 2 − 7 · x − 12 ≥ 0 графическим способом.

Решение

Ветви параболы направлены вниз. Дискриминант отрицательный, следовательно, общих точек параболы и оси абсцисс нет. Обратимся к рисунку.

Мы работаем с нестрогим неравенством со знаком ≥ , следовательно, интерес для нас представляют промежутки, на которых парабола располагается выше оси абсцисс. Судя по графику, таких промежутков нет. Это значит, что данное у условии задачи неравенство не имеет решений.

Ответ: Нет решений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter