Рациональные числа какой буквой. Целые и рациональные числа

Тема рациональных чисел достаточно обширна. О ней можно говорить бесконечно и писать целые труды, каждый раз удивляясь новым фишкам.

Чтобы не допускать в будущем ошибок, в данном уроке мы немного углубимся в тему рациональных чисел, почерпнём из неё необходимые сведения и двинемся дальше.

Содержание урока

Что такое рациональное число

Рациональное число — это число, которое может быть представлено в виде дроби , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.

К рациональным числам относятся следующие категории чисел:

  • целые числа (например −2, −1, 0 1, 2 и т.д.)
  • бесконечные периодические дроби (например 0,(3) и т.п.)

Каждое число из этой категории может быть представлено в виде дроби .

Пример 1. Целое число 2 может быть представлено в виде дроби . Значит число 2 относится не только к целым числам, но и к рациональным.

Пример 2. Смешанное число может быть представлено в виде дроби . Данная дробь получается путём перевода смешанного числа в неправильную дробь

Значит смешанное число относится к рациональным числам.

Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему .

Поскольку десятичная дробь 0,2 может быть представлена в виде дроби , значит она тоже относится к рациональным числам.

Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби . Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему .

Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби , значит она тоже относится к рациональным числам.

В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа .

Рациональные числа на координатной прямой

Координатную прямую мы рассматривали, когда изучали отрицательные числа. Напомним, что это прямая линия на которой лежат множество точек. Выглядит следующим образом:

На этом рисунке приведен небольшой фрагмент координатной прямой от −5 до 5.

Отметить на координатной прямой целые числа вида 2, 0, −3 не составляет особого труда.

Намного интереснее дела обстоят с остальными числами: с обыкновенными дробями, смешанными числами, десятичными дробями и т.д. Эти числа лежат между целыми числами и этих чисел бесконечно много.

Например, отметим на координатной прямой рациональное число . Данное число располагается ровно между нулём и единицей

Попробуем понять, почему дробь вдруг расположилась между нулём и единицей.

Как уже говорилось выше, между целыми числами лежат остальные числа — обыкновенные дроби, десятичные дроби, смешанные числа и т.д. К примеру, если увеличить участок координатной прямой от 0 до 1, то можно увидеть следующую картину

Видно, что между целыми числами 0 и 1 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 0,5. Внимательное рассмотрение этого рисунка даёт ответ на вопрос почему дробь расположилась именно там.

Дробь означает разделить 1 на 2. А если разделить 1 на 2, то мы получим 0,5

Десятичную дробь 0,5 можно замаскировать и под другие дроби. Из основного свойства дроби мы знаем, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то значение дроби не изменится.

Если числитель и знаменатель дроби умножить на любое число, например на число 4, то мы получим новую дробь , а эта дробь также как и равна 0,5

А значит на координатной прямой дробь можно расположить там же, где и располагалась дробь

Пример 2. Попробуем отметить на координатной рациональное число . Данное число располагается ровно между числами 1 и 2

Значение дроби равно 1,5

Если увеличить участок координатной прямой от 1 до 2, то мы увидим следующую картину:

Видно, что между целыми числами 1 и 2 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 1,5.

Мы увеличивали определенные отрезки на координатной прямой, чтобы увидеть остальные числа, лежащие на этом отрезке. В результате, мы обнаруживали десятичные дроби, которые имели после запятой одну цифру.

Но это были не единственные числа, лежащие на этих отрезках. Чисел, лежащих на координатной прямой бесконечно много.

Нетрудно догадаться, что между десятичными дробями, имеющими после запятой одну цифру, лежат уже другие десятичные дроби, имеющие после запятой две цифры. Другими словами, сотые части отрезка.

К примеру, попробуем увидеть числа, которые лежат между десятичными дробями 0,1 и 0,2

Ещё пример. Десятичные дроби, имеющие две цифры после запятой и лежащие между нулём и рациональным числом 0,1 выглядят так:

Пример 3. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться очень близко к нулю

Значение дроби равно 0,02

Если мы увеличим отрезок от 0 до 0,1 то увидим где точно расположилось рациональное число

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 0,02.

Пример 4. Отметим на координатной прямой рациональное число 0, (3)

Рациональное число 0, (3) является бесконечной периодической дробью. Его дробная часть никогда не заканчивается, она бесконечная

И поскольку у числа 0,(3) дробная часть является бесконечной, это означает, что мы не сможем найти точное место на координатной прямой, где это число располагается. Мы можем лишь указать это место приблизительно.

Рациональное число 0,33333… будет располагаться очень близко к обычной десятичной дроби 0,3

Данный рисунок не показывает точное место расположения числа 0,(3). Это лишь иллюстрация, показывающая как близко может располагаться периодическая дробь 0,(3) к обычной десятичной дроби 0,3.

Пример 5. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться посередине между числами 2 и 3

Это есть 2 (две целых) и (одна вторая). Дробь по другому ещё называют «половиной». Поэтому мы отметили на координатной прямой два целых отрезка и ещё половину отрезка.

Если перевести смешанное число в неправильную дробь, то получим обыкновенную дробь . Эта дробь на координатной прямой будет располагаться там же, где и дробь

Значение дроби равно 2,5

Если увеличить участок координатной прямой от 2 до 3, то мы увидим следующую картину:

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 2,5

Минус перед рациональным числом

В предыдущем уроке, который назвался мы научились делить целые числа. В роли делимого и делителя могли стоять как положительные, так и отрицательные числа.

Рассмотрим простейшее выражение

(−6) : 2 = −3

В данном выражении делимое (−6) является отрицательным числом.

Теперь рассмотрим второе выражение

6: (−2) = −3

Здесь уже отрицательным числом является делитель (−2). Но в обоих случаях мы получаем один и тот же ответ −3.

Учитывая, что любое деление можно записать в виде дроби, мы можем рассмотренные выше примеры также записать в виде дроби:

А поскольку в обоих случаях значение дроби одинаково, минус стоящий либо в числителе либо в знаменателе можно сделать общим, поставив его перед дробью

Поэтому между выражениями и и можно поставить знак равенства, потому что они несут одно и то же значение

В дальнейшем работая с дробями, если минус будет нам встречаться в числителе или в знаменателе, мы будем делать этот минус общим, ставя его перед дробью.

Противоположные рациональные числа

Как и целое число, рациональное число имеет своё противоположное число.

Например, для рационального числа противоположным числом является . Располагается оно на координатной прямой симметрично расположению относительно начала координат. Другими словами, оба этих числа равноудалены от начала координат

Перевод смешанных чисел в неправильные дроби

Мы знаем что для того, чтобы перевести смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части и прибавить к числителю дробной части. Полученное число будет числителем новой дроби, а знаменатель остаётся прежним..

Например, переведём смешанное число в неправильную дробь

Умножим целую часть на знаменатель дробной части и прибавим числитель дробной части:

Вычислим данное выражение:

(2 × 2) + 1 = 4 + 1 = 5

Полученное число 5 будет числителем новой дроби, а знаменатель останется прежним:

Полностью данная процедура записывается следующим образом:

Чтобы вернуть изначальное смешанное число, достаточно выделить целую часть в дроби

Но этот способ перевода смешанного числа в неправильную дробь применим только в том случае, если смешанное число является положительным. Для отрицательного числа данный способ не сработает.

Рассмотрим дробь . Выделим в этой дроби целую часть. Получим

Чтобы вернуть изначальную дробь нужно перевести смешанное число в неправильную дробь. Но если мы воспользуемся старым правилом, а именно умножим целую часть на знаменатель дробной части и к полученному числу прибавим числитель дробной части, то получим следующее противоречие:

Мы получили дробь , а должны были получить дробь .

Делаем вывод, что смешанное число в неправильную дробь переведено неправильно:

Чтобы правильно перевести отрицательное смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части, и из полученного числа вычесть числитель дробной части. В этом случае у нас всё встанет на свои места

Отрицательное смешанное число является противоположным для смешанного числа . Если положительное смешанное число располагается в правой части и выглядит так

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.


В этой статье мы начнем изучать рациональные числа . Здесь мы дадим определения рациональных чисел, дадим необходимые пояснения и приведем примеры рациональных чисел. После этого остановимся на том, как определить, является ли данное число рациональным или нет.

Навигация по странице.

Определение и примеры рациональных чисел

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа , подобно тому, как целые числа объединяют натуральные числа , противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Из озвученного определения следует, что рациональным числом является:

  • Любое натуральное число n . Действительно, можно представить любое натуральное число в виде обыкновенной дроби , например, 3=3/1 .
  • Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .
  • Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.
  • Любое смешанное число . Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и .
  • Любая конечная десятичная дробь или бесконечная периодическая дробь . Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, , а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 , 903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 , −72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа .

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления , тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и . Таким образом, , что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа −5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 , −13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

  • целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;
  • каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;
  • каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

Является ли данное число рациональным?

В предыдущем пункте мы выяснили, что любое натуральное число, любое целое число, любая обыкновенная дробь, любое смешанное число, любая конечная десятичная дробь, а также любая периодическая десятичная дробь является рациональным числом. Это знание нам позволяет «узнавать» рациональные числа из множества написанных чисел.

Но как быть, если число задано в виде некоторого , или как , и т.п., как ответить на вопрос, является ли данное число рациональным? Во многих случаях ответить на него очень сложно. Укажем некоторые направления ходу мысли.

Если число задано в виде числового выражения, которое содержит лишь рациональные числа и знаки арифметических действий (+, −, · и:), то значение этого выражения представляет собой рациональное число. Это следует из того, как определены действия с рациональными числами . Например, выполнив все действия в выражении , мы получаем рациональное число 18 .

Иногда, после упрощения выражений и более сложного вида, появляется возможность определить, рационально ли заданное число.

Пойдем дальше. Число 2 является рациональным числом, так как любое натуральное число является рациональным. А как насчет числа ? Является ли оно рациональным? Оказывается, что нет, - не является рациональным числом, это иррациональное число (доказательство этого факта методом от противного приведено в учебнике по алгебре за 8 класс, указанном ниже в списке литературы). Также доказано, что квадратный корень из натурального числа является рациональным числом только в тех случаях, когда под корнем находится число, являющееся полным квадратом некоторого натурального числа. Например, и - рациональные числа, так как 81=9 2 и 1 024=32 2 , а числа и не являются рациональными, так как числа 7 и 199 не являются полными квадратами натуральных чисел.

А число рационально или нет? В данном случае несложно заметить, что , следовательно, данное число – рациональное. А является ли число рациональным? Доказано, что корень k-ой степени из целого числа является рациональным числом только тогда, когда число под знаком корня является k-ой степенью некоторого целого числа. Поэтому не является рациональным числом, так как не существует целого числа, пятая степень которого равна 121 .

Метод от противного позволяет доказывать, что логарифмы некоторых чисел по некоторым основаниям не являются рациональными числами. Для примера докажем, что - не рациональное число.

Предположим противное, то есть, допустим, что - рациональное число и его можно записать в виде обыкновенной дроби m/n . Тогда и дают следующие равенства: . Последнее равенство невозможно, так как в левой его части находится нечетное число 5 n , а в правой части – четное число 2 m . Следовательно, наше предположение неверно, таким образом, не является рациональным числом.

В заключение стоит особо отметить, что при выяснении рациональности или иррациональности чисел следует воздержаться от скоропостижных выводов.

Например, не стоит сразу утверждать, что произведение иррациональных чисел π и e является иррациональным числом, это «как бы очевидно», но не доказано. При этом возникает вопрос: «А с чего бы произведению быть рациональным числом»? А почему бы и нет, ведь можно привести пример иррациональных чисел, произведение которых дает рациональное число: .

Также неизвестно, являются ли числа и многие другие числа рациональными или не являются таковыми. Например, существуют иррациональные числа, иррациональная степень которых является рациональным числом. Для иллюстрации приведем степень вида , основание данной степени и показатель степени не являются рациональными числами, но , а 3 – рациональное число.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа, подобно тому, как целые числа объединяют натуральные числа, противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Определение.

Рациональные числа – это числа, которые можно записать в виде положительной обыкновенной дроби, отрицательной обыкновенной дроби или числа нуль.

Из озвученного определения следует, что рациональным числом является:

· Любое натуральное число n . Действительно, можно представить любоенатуральное число в виде обыкновенной дроби, например, 3=3/1 .

· Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .

· Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.

· Любое смешанное число. Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и.

· Любая конечная десятичная дробь или бесконечная периодическая дробь. Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 ,903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 ,−72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа.

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления, тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и. Таким образом, что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа−5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 ,−13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

· целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;

· каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;

· каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

К началу страницы

Сложение положительных рациональных чисел коммутативно и ассоциативно,

("а, b Î Q +) а + b= b + а;

("а, b, с Î Q +) (а + b)+ с = а + (b+ с)

Прежде чем сформулировать определение умножения положительных рациональных чисел, рассмотрим следующую задачу: известно, что длина отрезка Х выражается дробьюпри единице длины Е, а длина единичного отрезка измерена при помощи единицы Е 1 и выражается дробью. Как найти число, которым будет представлена длина отрезка X, если измерить ее при помощи единицы длины Е 1 ?

Так как Х=Е, то nХ=mЕ, а из того, что Е =Е 1 следует, что qЕ=рЕ 1 . Умножим первое полученное равенство на q, а второе – на m. Тогда (nq)Х = (mq)Е и (mq)Е= (mр)Е 1 , откуда (nq)X= (mр)Е 1. Это равенство показывает, что длина отрезка х при единице длины выражается дробью , азначит, =, т.е. умножение дробей связано с переходом от одной единицы длины к другой при изме­рении длины одного и того же отрезка.

Определение.Если положительное число а представлено дробью, а положительное рациональное число b дробью, то их произведением называется число а b , которое представляется дробью.

Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основываетсяна определении умножения и сложения положительных рациональных чисел, а также на соответствующих свойствах сложения и умножения натуральных чисел.

46. Как известно вычитание - это действие, противоположное сложению.

Если a и b - положительные числа , то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a
Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.
Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.
Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)
Пример.
6 - 8 = 6 + (- 8) = - 2
Пример.
0 - 2 = 0 + (- 2) = - 2
Стоит запомнить выражения ниже.
0 - a = - a
a - 0 = a
a - a = 0

Правила вычитания отрицательных чисел
Вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.
Разность может быть положительным числом, отрицательным числом или числом ноль.
Примеры вычитания отрицательных и положительных чисел.
- 3 - (+ 4) = - 3 + (- 4) = - 7
- 6 - (- 7) = - 6 + (+ 7) = 1
5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a
+ (- a) = - a
Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a
- (- a) = + a
Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0
Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n
Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.
Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел+ (+) = + + (-) = -
- (-) = + - (+) = -
Или выучить простое правило.
Минус на минус даёт плюс,
Плюс на минус даёт минус.

Правила деления отрицательных чисел.
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

· модуль делимого разделить на модуль делителя;

· перед результатом поставить знак «+».

Примеры деления чисел с разными знаками:

Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении
+ : (+) = + + : (-) = -
- : (-) = + - : (+) = -

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби
Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».
Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:
Частное от деления нуля на число, отличное от нуля, равно нулю.
0: a = 0, a ≠ 0
Делить на ноль НЕЛЬЗЯ!
Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
а: 1 = a
а: (- 1) = - a
а: a = 1 , где а - любое рациональное число.
Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
если a × b = с; a = с: b; b = с: a;
если a: b = с; a = с × b; b = a: c
Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.
Пример нахождения неизвестного.
x × (- 5) = 10
x = 10: (- 5)
x = - 2


Похожая информация.


На этом уроке мы познакомимся с множеством рациональных чисел. Разберем основные свойства рациональных чисел, научимся переводить десятичные дроби в обыкновенные и наоборот.

Мы уже говорили про множества натуральных и целых чисел. Множество натуральных чисел является подмножеством целых чисел .

Теперь мы узнали, что такое дроби, научились с ними работать. Дробь , например, не является целым числом. Значит, нужно описать новое множество чисел, куда будут входить все дроби, и этому множеству нужно название, четкое определение и обозначение.

Начнем с названия. Латинское слово ratio переводится на русский язык как отношение, дробь. Название нового множества «рациональные числа» и происходит от этого слова. То есть «рациональные числа» можно перевести как «дробные числа».

Разберемся, из каких чисел состоит это множество. Можно предположить, что оно состоит из всех дробей. Например, таких - . Но такое определение было бы не совсем корректным. Дробь - это не само число, а форма записи числа. В примере, представленном ниже, две разные дроби обозначают одно и то же число:

Тогда точнее будет сказать, что рациональные числа - это те числа, которые можно представить в виде дроби. И это в самом деле уже почти то самое определение, которое и используют в математике.

Обозначили это множество буквой . А как связаны множества натуральных и целых чисел с новым множеством рациональных чисел? Натуральное число можно записать в виде дроби, причем бесконечным числом способов . А раз его можно представить в виде дроби, то оно тоже является рациональным.

С отрицательными целыми числами аналогичная ситуация. Любое целое отрицательное число можно представить в виде дроби . А можно ли число ноль представить в виде дроби? Конечно, можно, тоже бесконечным числом способов .

Таким образом, все натуральные и все целые числа тоже являются рациональными числами. Множества натуральных и целых чисел являются подмножествами множества рациональных чисел ().

Замкнутость множеств относительно арифметических операций

Необходимость введения новых чисел - целых, затем рациональных - м ожно объяснять не только задачами из реальной жизни. Сами арифметические операции подсказывают нам это. Сложим два натуральных числа: . Получим снова натуральное число.

Говорят, множество натуральных чисел замкнуто относительно операции сложения ( замкнуто относительно сложения). Самостоятельно подумайте, замкнуто ли множество натуральных чисел относительно умножения.

Как только мы пытаемся вычесть из числа равное ему или большее, то натуральных чисел нам не хватает. Введение нуля и отрицательных целых чисел исправляет ситуацию:

Множество целых чисел замкнуто относительно вычитания. Мы можем складывать и вычитать любые целые числа, не опасаясь, что у нас не будет числа, чтобы записать результат ( замкнуто относительно сложения и вычитания).

Замкнуто ли множество целых чисел относительно умножения? Да, произведение любых двух целых чисел дает в результате целое число ( замкнуто относительно сложения, вычитания и умножения).

Осталось еще одно действие - деление. Замкнуто ли множество целых чисел относительно деления? Ответ очевиден: нет. Поделим на . Среди целых чисел нет такого, чтобы записать ответ: .

Но с помощью дробного числа мы почти всегда можем записать результат деления одного целого числа на другое. Почему почти? Вспомним, что, по определению, делить на ноль нельзя.

Таким образом, множество рациональных чисел (которое возникает при введении дробей) претендует на роль множества, замкнутого относительно всех четырех арифметических операций.

Давайте проверим.

То есть множество рациональных чисел замкнуто относительно сложения, вычитания, умножения и деления, исключая деление на ноль. В этом смысле можно говорить, что множество рациональных чисел устроено «лучше», чем предшествующие множества натуральных и целых чисел. Означает ли это, что рациональные числа - последнее числовое множество, которое мы изучаем? Нет. Впоследствии у нас появятся другие числа, которые нельзя записать в виде дробей, например иррациональных.

Числа как инструмент

Числа - это инструмент, которые человек создавал по мере необходимости.

Рис. 1. Использование натуральных чисел

Дальше, когда понадобилось вести денежные расчеты, перед числом стали ставить знаки плюс или минус, показывая, нужно увеличить или уменьшить исходную величину. Так появились отрицательные и положительные числа. Новое множество назвали множеством целых чисел ().

Рис. 2. Использование дробных чисел

Поэтому появляется новый инструмент, новые числа - дроби. Мы их записываем разными эквивалентными способами: обыкновенными и десятичными дробями ().

Все числа - «старые» (целые) и «новые» (дробные) - объединили в одно множество и назвали его множеством рациональных чисел ( - рациональные числа )

Итак, рациональное число - это число, которое можно представить в виде обыкновенной дроби. Но это определение в математике еще немного уточняют. Любое рациональное число можно представить в виде дроби с положительным знаменателем, то есть отношением целого числа к натуральному: .

Тогда получаем определение: число называется рациональным, если его можно представить в виде дроби с целым числителем и натуральным знаменателем ().

Кроме обыкновенных дробей, мы используем и десятичные. Посмотрим, как они связаны с множеством рациональных чисел.

Десятичные дроби бывают трех видов: конечные, периодические и непериодические.

Бесконечные непериодические дроби: у таких дробей тоже бесконечное количество цифр после запятой, но периода нет. Примером является десятичная запись числа ПИ:

Любая конечная десятичная дробь по определению - это обыкновенная дробь со знаменателем и т.д.

Прочитаем десятичную дробь вслух и запишем в виде обыкновенной: , .

При обратном переходе от записи в виде обыкновенной дроби к десятичной могут получаться конечные десятичные дроби или бесконечные периодические дроби.

Переход от обыкновенной дроби к десятичной

Самый простой случай, когда знаменатель дроби - это степень десятки: и т.д. Тогда мы пользуемся определением десятичной дроби:

Есть дроби, у которых знаменатель легко приводится к такому виду: . Перейти к такой записи возможно, если в разложение знаменателя входят только двойки и пятерки.

Знаменатель состоит из трех двоек и одной пятерки. Каждая и образуют десятку. Значит, нам не хватает двух . Домножим на и числитель, и знаменатель:

Можно было поступить по-другому. Поделить столбиком на (см. рис. 1).

Рис. 2. Деление в столбик

В случае с знаменатель не удастся превратить в или другое разрядное число, так как в его разложение входит тройка. Остается один способ - делить в столбик (см. рис. 2).

Такое деление на каждом шаге будет давать в остатке и в частном. Этот процесс бесконечен. То есть получили бесконечную периодическую дробь с периодом

Давайте потренируемся. Переведем обыкновенные дроби в десятичные.

Во всех этих примерах мы получили конечную десятичную дробь, так как в разложении знаменателя были только двойки и пятерки.

(проверим себя делением в столик - см. рис. 3).

Рис. 3. Деление в столбик

Рис. 4. Деление в столбик

(см. рис. 4)

В разложение знаменателя входит тройка, значит, привести знаменатель к виду , и т.д. не получится. Делим на в столбик. Ситуация будет повторяться. В записи результата будет бесконечное число троек. Таким образом, .

(см. рис. 5)

Рис. 5. Деление в столбик

Итак, любое рациональное число можно представить в виде обыкновенной дроби. Это его определение.

А любую обыкновенную дробь можно представить в виде конечной или бесконечной периодической десятичной дроби.

Виды записи дробей:

запись десятичной дроби в виде обыкновенной: ; ;

запись обыкновенной дроби в виде десятичной: (конечная дробь); (бесконечная периодическая).

То есть любое рациональное число можно записать конечной или периодической десятичной дробью. При этом конечную дробь тоже можно считать периодической с периодом ноль.

Иногда рациональному числу дают именно такое определение: рациональное число - это число, которое можно записать периодической десятичной дробью.

Преобразование периодической дроби

Рассмотрим сначала дробь, у которой период состоит из одной цифры и нет предпериода. Обозначим это число буквой . Метод заключается в том, чтобы получить еще одно число с таким же периодом:

Это можно сделать, умножив исходное число на . Итак, число имеет такой же период. Вычтем из само число :

Чтобы убедиться, что мы правильно все сделали, давайте теперь сделаем переход в обратную сторону, уже известным нам способом - делением в столбик на (см. рис. 1).

В самом деле получаем число в исходной форме с периодом .

Рассмотрим число с предпериодом и более длинным периодом: . Метод остается точно таким же, как и в предыдущем примере. Надо получить новое число с таким же периодом и предпериодом такой же длины. Для этого нужно, чтобы запятая сдвинулась вправо на длину периода, т.е. на два знака. Умножим исходное число на :

Вычтем из полученного выражения исходное:

Итак, каков алгоритм перевода. Периодическую дробь нужно умножить на число вида и т.д., в котором столько нулей, сколько цифр в периоде десятичной дроби. Получим новую периодическую. Например:

Вычтем из одной периодической дроби другую, получим конечную десятичную дробь:

Остается выразить исходную периодическую дробь в виде обыкновенной.

Для тренировки самостоятельно запишите несколько периодических дробей. По данному алгоритму приведите их к виду обыкновенной дроби. Для проверки на калькуляторе поделите числитель на знаменатель. Если все верно, то получится исходная периодическая дробь

Итак, любую конечную или бесконечную периодическую дробь мы можем записать как обыкновенную дробь, как отношение натурального и целого чисел. Т.е. все такие дроби являются рациональными числами.

А как обстоит дело с непериодическими дробями? Оказывается, непериодические дроби невозможно представить в виде обыкновенных (этот факт мы примем без доказательства). А значит, они не являются рациональными числами. Их называют иррациональными.

Бесконечные непериодические дроби

Как мы уже сказали, рациональное число в десятичной записи - это или конечная, или периодическая дробь. Значит, если мы сможем построить бесконечную непериодическую дробь, то мы получим нерациональное, то есть иррациональное число.

Вот один из способов такого построения: Дробная часть этого числа состоит только из нулей и единиц. Количество нулей между единицами каждый раз увеличивается на . Здесь невозможно выделить повторяющуюся часть. То есть дробь не является периодической.

Потренируйтесь самостоятельно конструировать непериодические десятичные дроби, то есть иррациональные числа

Известный нам пример иррационального числа - это число пи (). Периода в этой записи нет. Но, кроме числа пи, существует бесконечно много других иррациональных чисел. Подробнее об иррациональными числами мы поговорим позже.

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 31-е изд., стер. - М: Мнемозина, 2013.
  2. Математика 5 класс. Ерина Т.М.. Рабочая тетрадь к учебнику Виленкина Н.Я., М.: Экзамен, 2013.
  3. Математика 5 класс. Мерзляк А.Г., Полонский В.Б., Якир М.С., М.: Вентана - Граф, 2013.
  1. Math-prosto.ru ().
  2. Cleverstudents.ru ().
  3. Mathematics-repetition.com ().

Домашнее задание