Скалярное произведение векторов по координатам. Скалярное произведение векторов

1. Определение и простейшие свойства. Возьмем ненулевые векторы а и b и отложим их от произвольной точки О: ОА = а и ОВ = b. Величина угла АОВ называется углом между векторами а и b и обозначается (a,b). Если же хотя бы один из двух векторов – нулевой, то угол между ними по определению считается прямым. Заметим, что по определению угол между векторами не меньше 0 и не больше . При этом угол между двумя ненулевыми векторами равен 0 тогда и только тогда, когда эти векторы сонаправлены и равен тогда и только тогда, когда они противоположно направлены.

Проверим, что угол между векторами не зависит от выбора точки О. Это очевидно, если векторы коллинеарны. В противном случае отложим от произвольной точки О 1 векторы О 1 А 1 = а и О 1 В 1 = b и заметим, что треугольники АОВ и А 1 О 1 В 1 равны по трем сторонам, ибо |ОА| = |О 1 А 1 | = |а|, |ОВ| = |О 1 В 1 | = |b|, |АВ| = |А 1 В 1 | = |b–а|. Поэтому углы АОВ и А 1 О 1 В 1 равны.

Теперь мы можем дать основное в этом параграфе

(5.1) Определение. Скалярным произведением двух векторов а и b (обозначается ab) называется число 6 , равное произведению длин этих векторов на косинус угла между векторами. Короче:

ab = |a||b|cos (a,b).

Операция нахождения скалярного произведения называется скалярным умножением векторов. Скалярное произведение аа вектора на себя называется скалярным квадратом этого вектора и обозначается а 2 .

(5.2) Скалярный квадрат вектора равен квадрату его длины.

Если |а| 0, то (a,a) = 0, откуда а 2 = |а||а|cos0 = |a| 2 . Если же а = 0, то а 2 = |а| 2 = 0.

(5.3) Неравенство Коши. Модуль скалярного произведения двух векторов не превосходит произведения модулей сомножителей: |ab| |a||b|. При этом равенство достигается тогда и только тогда, когда векторы а и b коллинеарны.

По определению |ab| = ||a||b|cos (a,b)| = |a||b||cos (a,b)| |a||b. Этим доказано само неравенство Коши. Теперь заметим. что для ненулевых векторов а и b равенство в нем достигается тогда и только тогда, когда |cos (a,b)| = 1, т.е. при (a,b) = 0 или (a,b) = . Последнее равносильно тому, что векторы а и b сонаправлены или противоположно направлены, т.е. коллинеарны. Если же хотя бы один из векторов а и b – нулевой, то они коллинеарны и |ab| = |a||b| = 0.

2. Основные свойства скалярного умножения. К ним относят следующие:

(СУ1) ab = ba (коммутативность);

(СУ2) (ха)b = х(ab) (ассоциативность);

(СУ3) а(b+c) = ab + ac (дистрибутивность).

Коммутативность здесь очевидна, ибо ab = bа. Ассоциативность при х = 0 также очевидна. Если х > 0, то

(ха)b = |ха||b|cos (хa,b) = |х||а||b|cos (хa,b) = х|а||b|cos (a,b) = х(ab),

ибо (хa,b) = (a,b) (из сонаправленности векторов ха и а – рис.21). Если же х < 0, то

(ха)b = |х||а||b|cos (хa,b) = –х|а||b|(–cos (a,b)) = х|а||b|cos (a,b) = х(ab),

ибо (хa,b) = (a,b) (из противоположной направленности векторов ха и а – рис.22). Таким образом, ассоциативность тоже доказана.

Доказать дистрибутивность сложнее. Для этого нам потребуется такая

(5.4) Лемма. Пусть а – ненулевой вектор, параллельный прямой l, а b – произвольный вектор. Тогда ортогональная проекция b " вектора b на прямую l равна
.

Если b = 0, то b " = 0 и ab = 0, так что в этом случае лемма верна. В дальнейшем будем считать, что вектор b" ненулевой. В этом случае от произвольной точки О прямой l отложим векторы ОА = а и ОВ = b, а также опустим перпендикуляр BB" из точки В на прямую l. По определению O B" = b " и (a,b) = АОВ. Обозначим АОВ через и докажем лемму отдельно для каждого из следующих трех случаев:

1) < /2. Тогда векторы а и сонаправлены (рис.23) и

b " = =
=
.

2) > /2 . Тогда векторы а и b " противоположно направлены (рис.24) и

b " = =
= .

3) = /2. Тогда b " = 0 и ab = 0, откуда b " =
= 0.

Теперь докажем дистрибутивность (СУ3). Она очевидна, если вектор а – нулевой. Пусть а 0. Тогда проведем прямую l || а, и обозначим через b " и c " ортогональные проекции на нее векторов b и с, а через d " – ортогональную проекцию на нее вектора d = b+c. По теореме 3.5 d " = b "+ c ". Применяя к последнему равенству лемму 5.4, получаем равенство
=
. Скалярно умножив его на а, находим, что
2 =
, откуда ad = ab+ac, что и требовалось доказать.

Доказанные нами свойства скалярного умножения векторов аналогичны соответствующим свойствам умножения чисел. Но не все свойства умножения чисел переносятся на скалярное умножение векторов. Вот типичные примеры:

1

) Если ab = 0, то это не означает, что а = 0 или b = 0. Пример: два ненулевых вектора, образующие прямой угол.

2) Если ab = ac, то это не означает, что b = с, даже если вектор а – ненулевой. Пример: b и с – два различных вектора одинаковой длины, образующие с вектором а равные углы (рис. 25).

3) Неверно, что всегда а(bc) = (ab)c: хотя бы потому, что справедливость такого равенства при bc, ab 0 влечет коллинеарность векторов а и с.

3. Ортогональность векторов. Два вектора называются ортогональными, если угол между ними – прямой. Ортогональность векторов обозначается значком .

Когда мы определяли угол между векторами, то договорились считать угол между нулевым вектором и любым другим вектором прямым. Поэтому нулевой вектор ортогонален любому. Это соглашение позволяет доказать такой

(5.5) Признак ортогональности двух векторов. Два вектора ортогональны тогда и только тогда, когда их скалярное произведение равно 0.

Пусть а и b – произвольные векторы. Если хотя бы один из них – нулевой, то они ортогональны, а их скалярное произведение равно 0. Таким образом, в этом случае теорема верна. Допустим теперь, что оба данных вектора – ненулевые. По определению ab = |a||b|cos (a,b). Поскольку по нашему предположению числа |a| и |b| не равны 0, то ab = 0 cos (a,b) = 0 (a,b) = /2, что и требовалось доказать.

Равенство ab = 0 часто принимают за определение ортогональности векторов.

(5.6) Следствие. Если вектор а ортогонален каждому из векторов а 1 , …, а п , то он ортогонален и любой их линейной комбинации.

Достаточно заметить, что из равенства аа 1 = … = аа п = 0 следует равенство а(х 1 а 1 + … +х п а п ) = х 1 (аа 1 ) + … + х п (аа п ) = 0.

Из следствия 5.6 легко выводится школьный признак перпендикулярности прямой и плоскости. В самом деле, пусть некоторая прямая MN перпендикулярна двум пересекающимся прямым АВ и АС. Тогда вектор MN ортогонален векторам АВ и АС. Возьмем в плоскости АВС любую прямую DE. Вектор DE компланарен неколлинеарным векторам АВ и АС, и потому раскладывается по ним. Но тогда он тоже ортогонален вектору MN, то есть прямые MN и DE перпендикулярны. Получается, что прямая MN перпендикулярна любой прямой из плоскости АВС, что и требовалось доказать.

4. Ортонормированные базисы. (5.7) Определение. Базис векторного пространства называется ортонормированным, если, во-первых, все его векторы имеют единичную длину и, во-вторых, любые два его вектора ортогональны.

Векторы ортонормированного базиса в трехмерном пространстве обычно обозначают буквами i, j и k, а на векторной плоскости – буквами i и j. Учитывая признак ортогональности двух векторов и равенство скалярного квадрата вектора квадрату его длины, условия ортонормированности базиса (i,j,k) пространства V 3 можно записать так:

(5.8) i 2 = j 2 = k 2 = 1 , ij = ik = jk = 0,

а базиса (i,j) векторной плоскости – так:

(5.9) i 2 = j 2 = 1 , ij = 0.

Пусть векторы а и b имеют в ортонормированном базисе (i,j,k) пространства V 3 координаты (а 1 , а 2 , а 3 ) и (b 1 b 2 , b 3 ) соответственно. Тогда ab = (а 1 i+ а 2 j+ а 3 k)(b 1 i+b 2 j+b 3 k) = a 1 b 1 i 2 +a 2 b 2 j 2 +a 3 b 3 k 2 +a 1 b 2 ij+a 1 b 3 ik+a 2 b 1 ji+a 2 b 3 jk+a 3 b 1 ki+a 3 b 2 kj = a 1 b 1 + a 2 b 2 + a 3 b 3 . Так получается формула для скалярного произведения векторов а(а 1 2 3 ) и b(b 1 ,b 2 ,b 3 ), заданных своими координатами в ортонормированном базисе пространства V 3 :

(5.10) ab = a 1 b 1 + a 2 b 2 + a 3 b 3 .

Для векторов а(а 1 2 ) и b(b 1 , b 2 ), заданных своими координатами в ортонормированном базисе на векторной плоскости, она имеет вид

(5.11) ab = a 1 b 1 + a 2 b 2 .

Подставим в формулу (5.10) b = a. Получится, что в ортонормированном базисе а 2 = а 1 2 + а 2 2 + а 3 2 . Поскольку а 2 = |а| 2 , получается такая формула для нахождения длины вектора а(а 1 2 3 ), заданного своими координатами в ортонормированном базисе пространства V 3 :

(5.12) |а| =
.

На векторной плоскости она в силу (5.11) приобретает вид

(5.13) |а| =
.

Подставляя в формулу (5.10) b = i, b = j, b = k, получаем еще три полезных равенства:

(5.14) ai = a 1 , aj = а 2 , ak = а 3 .

Простота координатных формул для нахождения скалярного произведения векторов и длины вектора составляет главное преимущество ортонормированных базисов. Для неортонормированных базисов эти формулы, вообще говоря, неверны, и их применение в этом случае является грубой ошибкой.

5. Направляющие косинусы. Возьмем в ортонормированном базисе (i,j,k) пространства V 3 вектор а(а 1 2 3 ). Тогда ai = |a||i|cos (a,i) = |a|cos (a,i). С другой стороны, ai = a 1 по формуле 5.14. Получается, что

(5.15) а 1 = |a|cos (a,i).

и, аналогично,

а 2 = |a|cos (a,j), а 3 = |a|cos (a,k).

Если вектор а – единичный, эти три равенства приобретают особенно простой вид:

(5.16) а 1 = cos (a,i), а 2 = cos (a,j), а 3 = cos (a,k).

Косинусы углов, образованных вектором с векторами ортонормированного базиса, называются направляющими косинусами этого вектора в данном базисе. Как показывают формулы 5.16, координаты единичного вектора в ортонормированном базисе равны его направляющим косинусам.

Из 5.15 вытекает, что а 1 2 + а 2 2 + а 3 2 = |а| 2 (cos 2 (a,i)+cos 2 (a,j) +cos 2 (a,k)). С другой стороны, а 1 2 + а 2 2 + а 3 2 = |а| 2 . Получается, что

(5.17) сумма квадратов направляющих косинусов ненулевого вектора равна 1.

Этот факт бывает полезен для решения некоторых задач.

(5.18) Задача. Диагональ прямоугольного параллелепипеда образует с двумя его ребрами, выходящими из той же вершины, углы по 60 . Какой угол она образует с третьим выходящим из этой вершины ребром?

Рассмотрим ортонормированный базис пространства V 3 , векторы которого изображены ребрами параллелепипеда, выходящим из данной вершины. Поскольку вектор диагонали образует с двумя векторами этого базиса углы по 60 , квадраты двух из трех его направляющих косинусов равны cos 2 60 = 1/4. Поэтому квадрат третьего косинуса равен 1/2, а сам этот косинус равен 1/
. Значит, искомый угол равен 45
.

Угол между векторами

Рассмотрим два данных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$. Отложим от произвольно выбранной точки $O$ векторы $\overrightarrow{a}=\overrightarrow{OA}$ и $\overrightarrow{b}=\overrightarrow{OB}$, тогда угол $AOB$ называется углом между векторами $\overrightarrow{a}$ и $\overrightarrow{b}$ (рис. 1).

Рисунок 1.

Отметим здесь, что если векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены или один из них является нулевым вектором, тогда угол между векторами равен $0^0$.

Обозначение: $\widehat{\overrightarrow{a},\overrightarrow{b}}$

Понятие скалярного произведения векторов

Математически это определение можно записать следующим образом:

Скалярное произведение может равняться нулю в двух случаях:

    Если один из векторов будет нулевым вектором (Так как тогда его длина равна нулю).

    Если векторы будут взаимно перпендикулярны (то есть $cos{90}^0=0$).

Отметим также, что скалярное произведение больше нуля, если угол между этими векторами острый (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ } >0$), и меньше нуля, если угол между этими векторами тупой (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ }

С понятием скалярного произведения связано понятие скалярного квадрата.

Определение 2

Скалярным квадратом вектора $\overrightarrow{a}$ называется скалярное произведение этого вектора самого на себя.

Получаем, что скалярный квадрат равен

\[\overrightarrow{a}\overrightarrow{a}=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|{cos 0^0\ }=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|={\left|\overrightarrow{a}\right|}^2\]

Вычисление скалярного произведения по координатам векторов

Помимо стандартного способа нахождения значения скалярного произведения, который вытекает из определения, существует еще один способ.

Рассмотрим его.

Пусть векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ имеют координаты $\left(a_1,b_1\right)$ и $\left(a_2,b_2\right)$, соответственно.

Теорема 1

Скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ равно сумме произведений соответствующих координат.

Математически это можно записать следующим образом

\[\overrightarrow{a}\overrightarrow{b}=a_1a_2+b_1b_2\]

Доказательство.

Теорема доказана.

Эта теорема имеет несколько следствий:

Следствие 1: Векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ перпендикулярны тогда и только тогда, когда $a_1a_2+b_1b_2=0$

Следствие 2: Косинус угла между векторами равен $cos\alpha =\frac{a_1a_2+b_1b_2}{\sqrt{a^2_1+b^2_1}\cdot \sqrt{a^2_2+b^2_2}}$

Свойства скалярного произведения векторов

Для любых трех векторов и действительного числа $k$ справедливо:

    ${\overrightarrow{a}}^2\ge 0$

    Данное свойство следует из определения скалярного квадрата (определение 2).

    Переместительный закон: $\overrightarrow{a}\overrightarrow{b}=\overrightarrow{b}\overrightarrow{a}$.

    Данное свойство следует из определения скалярного произведения (определение 1).

    Распределительный закон:

    $\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\left(a_1+a_2\right)a_3+\left(b_1+b_2\right)b_3=a_1a_3+a_2a_3+b_1b_3+b_2b_3==\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}\]

    Сочетательный закон: $\left(k\overrightarrow{a}\right)\overrightarrow{b}=k(\overrightarrow{a}\overrightarrow{b})$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(k\overrightarrow{a}\right)\overrightarrow{b}=ka_1a_2+kb_1b_2=k\left(a_1a_2+b_1b_2\right)=k(\overrightarrow{a}\overrightarrow{b})\]

Пример задачи на вычисление скалярного произведения векторов

Пример 1

Найти скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$, если $\left|\overrightarrow{a}\right|=3$ и $\left|\overrightarrow{b}\right|=2$, а угол между ними равен ${{30}^0,\ 45}^0,\ {90}^0,\ {135}^0$.

Решение.

Используя определение 1, получаем

Для ${30}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({30}^0\right)\ }=6\cdot \frac{\sqrt{3}}{2}=3\sqrt{3}\]

Для ${45}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({45}^0\right)\ }=6\cdot \frac{\sqrt{2}}{2}=3\sqrt{2}\]

Для ${90}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({90}^0\right)\ }=6\cdot 0=0\]

Для ${135}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({135}^0\right)\ }=6\cdot \left(-\frac{\sqrt{2}}{2}\right)=-3\sqrt{2}\]

В случае плоской задачи скалярное произведение векторов a = {a x ; a y } и b = {b x ; b y } можно найти воспользовавшись следующей формулой:

a · b = a x · b x + a y · b y

Формула скалярного произведения векторов для пространственных задач

В случае пространственной задачи скалярное произведение векторов a = {a x ; a y ; a z } и b = {b x ; b y ; b z } можно найти воспользовавшись следующей формулой:

a · b = a x · b x + a y · b y + a z · b z

Формула скалярного произведения n -мерных векторов

В случае n-мерного пространства скалярное произведение векторов a = {a 1 ; a 2 ; ... ; a n } и b = {b 1 ; b 2 ; ... ; b n } можно найти воспользовавшись следующей формулой:

a · b = a 1 · b 1 + a 2 · b 2 + ... + a n · b n

Свойства скалярного произведения векторов

1. Скалярное произведение вектора самого на себя всегда больше или равно нуля:

2. Скалярное произведение вектора самого на себя равно нулю тогда и только тогда, когда вектор равен нулевому вектору:

a · a = 0 <=> a = 0

3. Скалярное произведение вектора самого на себя равно квадрату его модуля:

4. Операция скалярного умножения коммуникативна:

5. Если скалярное произведение двух не нулевых векторов равно нулю, то эти вектора ортогональны:

a ≠ 0, b ≠ 0, a · b = 0 <=> a ┴ b

6. (αa) · b = α(a · b)

7. Операция скалярного умножения дистрибутивна:

(a + b) · c = a · c + b · c

Примеры задач на вычисление скалярного произведения векторов

Примеры вычисления скалярного произведения векторов для плоских задач

Найти скалярное произведение векторов a = {1; 2} и b = {4; 8}.

Решение: a · b = 1 · 4 + 2 · 8 = 4 + 16 = 20.

Найти скалярное произведение векторов a и b, если их длины |a| = 3, |b| = 6, а угол между векторами равен 60˚.

Решение: a · b = |a| · |b| cos α = 3 · 6 · cos 60˚ = 9.

Найти скалярное произведение векторов p = a + 3b и q = 5a - 3 b, если их длины |a| = 3, |b| = 2, а угол между векторами a и b равен 60˚.

Решение:

p · q = (a + 3b) · (5a - 3b) = 5 a · a - 3 a · b + 15 b · a - 9 b · b =

5 |a| 2 + 12 a · b - 9 |b| 2 = 5 · 3 2 + 12 · 3 · 2 · cos 60˚ - 9 · 2 2 = 45 +36 -36 = 45.

Пример вычисления скалярного произведения векторов для пространственных задач

Найти скалярное произведение векторов a = {1; 2; -5} и b = {4; 8; 1}.

Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 = 4 + 16 - 5 = 15.

Пример вычисления скалярного произведения для n -мерных векторов

Найти скалярное произведение векторов a = {1; 2; -5; 2} и b = {4; 8; 1; -2}.


Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 + 2 · (-2) = 4 + 16 - 5 -4 = 11.

13. Векторным произведением векторов и вектора называется третий вектор , определяемый следующим образом:

2) перпендикулярно, перпендикулярно. (1"")

3) векторы ориентированы также, как и базис всего пространства (положительно или отрицательно).

Обозначают: .

Физический смысл векторного произведения

― момент силы относительно точки О; ― радиус ― вектор точки приложения силы, тогда

причем, если перенести в точку О, то тройка, должна быть ориентирована как вектора базиса.

Скалярное произведение векторов (далее в тексте СП). Дорогие друзья! В состав экзамена по математике входит группа задач на решение векторов. Некоторые задачи мы уже рассмотрели. Можете посмотреть их в категории «Векторы». В целом, теория векторов несложная, главное последовательно её изучить. Вычисления и действия с векторами в школьном курсе математики просты, формулы не сложные. Загляните в . В этой статье мы разберём задачи на СП векторов (входят в ЕГЭ). Теперь «погружение» в теорию:

Ч тобы найти координаты вектора, нужно из координат его конца вычесть соответствующие координаты его начала

И ещё:


*Длина вектора (модуль) определяется следующим образом:

Данные формулы необходимо запомнить!!!

Покажем угол между векторами:

Понятно, что он может изменяться в пределах от 0 до 180 0 (или в радианах от 0 до Пи).

Можем сделать некоторые выводы о знаке скалярного произведения. Длины векторов имеют положительное значение, это очевидно. Значит знак скалярного произведения зависит от значения косинуса угла между векторами.

Возможны случаи:

1. Если угол между векторами острый (от 0 0 до 90 0), то косинус угла будет иметь положительное значение.

2. Если угол между векторами тупой (от 90 0 до 180 0), то косинус угла будет иметь отрицательное значение.

*При нуле градусов, то есть когда векторы имеют одинаковое направление, косинус равен единице и соответственно результат будет положительным.

При 180 о, то есть когда векторы имеют противоположные направления, косинус равен минус единице, и соответственно результат будет отрицательным.

Теперь ВАЖНЫЙ МОМЕНТ!

При 90 о, то есть когда векторы перпендикулярны друг другу, косинус равен нулю, а значит и СП равно нулю. Этот факт (следствие, вывод) используется при решение многих задач, где речь идёт о взаимном расположении векторов, в том числе и в задачах входящих в открытый банк заданий по математике.

Сформулируем утверждение: скалярное произведение равно нулю тогда и только тогда, когда данные векторы лежат на перпендикулярных прямых.

Итак, формулы СП векторов:

Если известны координаты векторов или координаты точек их начал и концов, то всегда сможем найти угол между векторами:

Рассмотрим задачи:

27724 Найдите скалярное произведение векторов a и b .

Скалярное произведение векторов мы можем найти по одной из двух формул:

Угол между векторами неизвестен, но мы без труда можем найти координаты векторов и далее воспользоваться первой формулой. Так как начала обоих векторов совпадают с началом координат, то координаты данных векторов равны координатам их концов, то есть

Как найти координаты вектора изложено в .

Вычисляем:

Ответ: 40


Найдём координаты векторов и воспользуемся формулой:

Чтобы найти координаты вектора необходимо из координат конца вектора вычесть соответствующие координаты его начала, значит

Вычисляем скалярное произведение:

Ответ: 40

Найдите угол между векторами a и b . Ответ дайте в градусах.

Пусть координаты векторов имеют вид:

Для нахождения угла между векторами используем формулу скалярного произведения векторов:

Косинус угла между векторами:

Следовательно:

Координаты данных векторов равны:

Подставим их в формулу:

Угол между векторами равен 45 градусам.

Ответ: 45

Если в задаче и длины векторов, и угол между ними преподнесены "на блюдечке с голубой каёмочкой", то условие задачи и её решение выглядят так:

Пример 1. Даны векторы . Найти скалярное произведение векторов , если их длины и угол между ними представлены следующими значениями:

Справедливо и другое определение, полностью равносильное определению 1.

Определение 2 . Скалярным произведением векторов называется число (скаляр), равное произведению длины одного их этих векторов на проекцию другого вектора на ось, определяемую первым из указанных векторов. Формула согласно определению 2:

Задачу с применением этой формулы решим после следующего важного теоретического пункта.

Определение скалярного произведения векторов через координаты

То же самое число можно получить, если перемножаемые векторы заданы своими координатами.

Определение 3. Скалярное произведение векторов - это число, равное сумме попарных произведений их соответствующих координат .

На плоскости

Если два вектора и на плоскости определены своими двумя декартовыми прямоугольными координатами

то скалярное произведение этих векторов равно сумме попарных произведений их соответствующих координат:

.

Пример 2. Найти численную величину проекции вектора на ось, параллельную вектору .

Решение. Находим скалярное произведение векторов, складывая попарные произведения их координат:

Теперь нам требуется приравнять полученное скалярное произведение произведению длины вектора на проекцию вектора на ось, параллельную вектору (в соответствии с формулой ).

Находим длину вектора как квадратный корень из суммы квадратов его координат:

.

Составляем уравнение и решаем его:

Ответ. Искомая численная величина равна минус 8.

В пространстве

Если два вектора и в пространстве определены своими тремя декартовыми прямоугольными координатами

,

то скалярное произведение этих векторов также равно сумме попарных произведений их соответствующих координат, только координат уже три:

.

Задача на нахождение скалярного произведения рассмотренным способом - после разбора свойств скалярного произведения. Потому что в задаче потребуется определить, какой угол образуют перемножаемые векторы.

Свойства скалярного произведения векторов

Алгебраические свойства

1. (переместительное свойство : от перемены местами перемножаемых векторов величина их скалярного произведения не меняется).

2. (сочетательное относительно числового множителя свойство : скалярное произведение вектора, умноженного на некоторый множитель, и другого вектора, равно скалярному произведению этих векторов, умноженному на тот же множитель).

3. (распределительное относительно суммы векторов свойство : скалярное произведение суммы двух векторов на третий вектор равно сумме скалярных произведений первого вектора на третий вектор и второго вектора на третий вектор).

4. (скалярный квадрат вектора больше нуля ), если - ненулевой вектор, и , если - нулевой вектор.

Геометрические свойства

В определениях изучаемой операции мы уже касались понятия угла между двумя векторами. Пора уточнить это понятие.

На рисунке выше видны два вектора, которые приведены к общему началу. И первое, на что нужно обратить внимание: между этими векторами существуют два угла - φ 1 и φ 2 . Какой из этих углов фигурирует в определениях и свойствах скалярного произведения векторов? Сумма рассмотренных углов равна 2π и поэтому косинусы этих углов равны. В определение скалярного произведения входит только косинус угла, а не значение его выражения. Но в свойствах рассматривается только один угол. И это тот из двух углов, который не превосходит π , то есть 180 градусов. На рисунке этот угол обозначен как φ 1 .

1. Два вектора называют ортогональными и угол между этими векторами - прямой (90 градусов или π /2 ), если скалярное произведение этих векторов равно нулю :

.

Ортогональностью в векторной алгебре называется перпендикулярность двух векторов.

2. Два ненулевых вектора составляют острый угол (от 0 до 90 градусов, или, что тоже самое - меньше π скалярное произведение положительно .

3. Два ненулевых вектора составляют тупой угол (от 90 до 180 градусов, или, что то же самое - больше π /2 ) тогда и только тогда, когда их скалярное произведение отрицательно .

Пример 3. В координатах даны векторы:

.

Вычислить скалярные произведения всех пар данных векторов. Какой угол (острый, прямой, тупой) образуют эти пары векторов?

Решение. Вычислять будем путём сложения произведений соответствующих координат.

Получили отрицательное число, поэтому векторы образуют тупой угол.

Получили положительное число, поэтому векторы образуют острый угол.

Получили нуль, поэтому векторы образуют прямой угол.

Получили положительное число, поэтому векторы образуют острый угол.

.

Получили положительное число, поэтому векторы образуют острый угол.

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними .

Пример 4. Даны длины двух векторов и угол между ними:

.

Определить, при каком значении числа векторы и ортогональны (перпендикулярны).

Решение. Перемножим векторы по правилу умножения многочленов:

Теперь вычислим каждое слагаемое:

.

Составим уравнение (равенство произведения нулю), приведём подобные члены и решим уравнение:

Ответ: мы получили значение λ = 1,8 , при котором векторы ортогональны.

Пример 5. Доказать, что вектор ортогонален (перпендикулярен) вектору

Решение. Чтобы проверить ортогональность, перемножим векторы и как многочлены, подставляя вместо его выражение, данное в условии задачи:

.

Для этого нужно каждый член (слагаемое) первого многочлена умножить на каждый член второго и полученные произведения сложить:

.

В полученном результате дробь за счёт сокращается. Получается следующий результат:

Вывод: в результате умножения получили нуль, следовательно, ортогональность (перпендикулярность) векторов доказана.

Решить задачу самостоятельно, а затем посмотреть решение

Пример 6. Даны длины векторов и , a угол между этими векторами равен π /4 . Определить, при каком значении μ векторы и взаимно перпендикулярны.

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними .

Матричное представление скалярного произведения векторов и произведение n-мерных векторов

Иногда выигрышным для наглядности является представление двух перемножаемых векторов в виде матриц. Тогда первый вектор представлен в виде матрицы-строки, а второй - в виде матрицы-столбца:

Тогда скалярное произведение векторов будет произведением этих матриц :

Результат тот же, что и полученный способом, который мы уже рассмотрели. Получили одно единственное число, и произведение матрицы-строки на матрицу-столбец также является одним единственным числом.

В матричной форме удобно представлять произведение абстрактных n-мерных векторов. Так, произведение двух четырёхмерных векторов будет произведением матрицы-строки с четырьмя элементами на матрицу-столбец также с четырьмя элементами, произведение двух пятимерных векторов - произведением матрицы-строки с пятью элементами на матрицу-столбец также с пятью элементами и так далее.

Пример 7. Найти скалярные произведения пар векторов

,

используя матричное представление.

Решение. Первая пара векторов. Представляем первый вектор в виде матрицы-строки, а второй - в виде матрицы-столбца. Находим скалярное произведение этих векторов как произведение матрицы-строки на матрицу-столбец:

Аналогично представляем вторую пару и находим:

Как видим, результаты получились те же, что и у тех же пар из примера 2.

Угол между двумя векторами

Вывод формулы косинуса угла между двумя векторами очень красив и краток.

Чтобы выразить скалярное произведение векторов

(1)

в координатной форме, предварительно найдём скалярные произведение ортов. Скалярное произведение вектора на само себя по определению:

То, что записано в формуле выше, означает: скалярное произведение вектора на самого себя равно квадрату его длины . Косинус нуля равен единице, поэтому квадрат каждого орта будет равен единице:

Так как векторы

попарно перпендикулярны, то попарные произведения ортов будут равны нулю:

Теперь выполним умножение векторных многочленов:

Подставляем в правую часть равенства значения соответствующих скалярных произведений ортов:

Получаем формулу косинуса угла между двумя векторами:

Пример 8. Даны три точки A (1;1;1), B (2;2;1), C (2;1;2).

Найти угол .

Решение. Находим координаты векторов:

,

.

По формуле косинуса угла получаем:

Следовательно, .

Для самопроверки можно использовать онлайн калькулятор Скалярное произведение векторов и косинус угла между ними .

Пример 9. Даны два вектора

Найти сумму, разность, длину, скалярное произведение и угол между ними.

2.Разность