Иммунное отторжение. Отторжение трансплантанта

(РОТ) – иммунологический процесс, направленный против чужеродных для организма тканей, пересаженных в ходе операции трансплантации. Сопровождается комплексом местных (отек, воспаление) и общих (явления интоксикации, повышение температуры, слабость) проявлений, выраженность и скорость развития которых зависят от варианта реакции. Диагностика производится посредством изучения клинической картины, гистологического исследования пересаженных тканей, ряда лабораторных и инструментальных методов в зависимости от типа трансплантата. Лечение сводится к проведению иммуносупрессивной терапии, использованию цитотоксических средств, некоторые препараты назначают пожизненно.

Общие сведения

Иммунологические реакции отторжения трансплантата возникают при использовании аллогенных (пересаженных от человека человеку) или ксеногенных (от животных человеку) тканей и органов. Аутотрансплантаты, например кожа, пересаженная с бедра на лицо, имеют такую же антигенную структуру, как и другие ткани организма, поэтому реакции не вызывают. Отторжение крайне редко возникает при пересадке бессосудистых структур – роговицы, некоторых хрящей – поскольку в этом случае отсутствует контакт чужеродных тканей с иммунокомпетентными клетками. Состояние было самым распространенным осложнением на заре трансплантологии, но в последние годы встречается все реже, несмотря на увеличение количества хирургических операций такого типа. Это связано с успехами в определении гистосовместимости тканей донора и реципиента, разработкой более действенных методов иммуносупрессивной терапии.

Причины реакции отторжения трансплантата

Антигенная совместимость тканей обусловлена сочетанием ряда антигенов – в первую очередь, главного комплекса гистосовместимости (шесть главных антигенов и ряд второстепенных или минорных). Кроме того, влияние могут оказывать и другие белковые антигенные комплексы (АВ0, белки соединительных тканей). Во многом реакции отторжения аналогичны обычному иммунному ответу при попадании в организм чужеродных антигенов или (в некоторых случаях) реакциям гиперчувствительности 2-го и 3-го типов. В их развитии принимают участие гуморальные и клеточные механизмы иммунитета. Скорость возникновения патологических изменений трансплантата зависит от вида реакции, активности иммунитета реципиента, величины антигенного различия тканей.

Причиной молниеносных разновидностей отторжения трансплантата служит сенсибилизация организма реципиента, в результате которой при пересадке возникают процессы, аналогичные реакциям непереносимости с образованием иммунных комплексов и активацией системы комплемента. Более распространенные острые виды иммунологической реакции на пересаженные ткани обычно развиваются из-за несовместимости по антигенам ГКГС, в патогенезе участвует преимущественно клеточный иммунный ответ. Хронические формы РОТ обусловлены как клеточными, так и гуморальными реакциями, их причиной часто становится некорректная иммуносупрессивная терапия, назначенная после операции.

Патогенез

Процессы патогенеза реакции отторжения трансплантата отличаются при разных формах этого состояния. Сверхострые или молниеносные реакции обусловлены сенсибилизацией организма к антигенам пересаженного органа, поэтому протекают по типу непереносимости или аллергии. При контакте тканей аллотрансплантата с кровью реципиента стимулируется образование иммунокомплексов, оседающих на внутренней поверхности сосудов. Они провоцируют активацию системы комплемента, сильно повреждая эндометрий сосудистой сети трансплантата, из-за чего происходит образование множественных микротромбов и эмболизация сосудов. Это ведет к ишемии пересаженных тканей, их отеку, а при отсутствии терапевтических мер – к некрозу. Скорость развития патологических процессов составляет всего несколько часов или суток.

В основе острых и хронических видов РОТ лежат процессы клеточного иммунного ответа, поэтому такие реакции развиваются несколько медленнее – на протяжении нескольких недель. При антигенной несовместимости тканей трансплантата и реципиента на фоне адекватной или повышенной активности иммунитета происходит распознавание чужеродных клеток макрофагами и Т-лимфоцитами (хелперами или индукторами). Последние активируют Т-киллеры, которые выделяют протеолитические ферменты, разрушающие клеточные мембраны структур аллотрансплантата. Итогом является развитие воспалительной реакции в пересаженном органе, выраженность которой зависит от уровня активности иммунной системы. При длительно протекающем процессе возможно подключение гуморальных факторов иммунитета с синтезом специфических антител, направленных против антигенов трансплантата.

Классификация

Выделяют несколько форм реакции отторжения, различающихся между собой по скорости развития и ряду клинических проявлений. Причиной такой разницы являются разные виды РОТ, обладающие неодинаковой скоростью возникновения, а также преимущественным поражением тех или иных структур трансплантата. Зная примерные сроки формирования того или иного типа иммунного ответа, специалист может определить его характер и назначить оптимальное лечение. Всего существует три основных клинических формы реакций непереносимости тканей трансплантата:

  • Молниеносная или сверхострая. Возникает в первые минуты или часы после «подключения» пересаженного органа к системному кровотоку реципиента, обусловлена сенсибилизацией организма последнего к антигенам трансплантата. Характеризуется массивными микроциркуляторными нарушениями с ишемическими явлениями в аллотрансплантате и развитием некроза, воспаление при этом имеет вторичный характер.
  • Острая. Регистрируется в течение первых трех недель после пересадки, патогенез основан на клеточном иммунном ответе при несовместимости донора и реципиента. Основным проявлением становится развитие воспалительных процессов в пересаженных тканях, их выраженность зависит от активности иммунитета.
  • Хроническая. Возникает через несколько месяцев после трансплантации, может иметь рецидивирующий характер, сильно зависит от режима иммуносупрессивной терапии. Развивается посредством как клеточных, так и гуморальных механизмов иммунного ответа.

Симптомы реакции отторжения трансплантата

Все проявления отторжения аллотрансплантата разделяют на системные, зависящие только от патогенеза процесса и реактивности иммунитета, и локальные, связанные непосредственно с трансплантированным органом или тканью. Среди общих симптомов всегда наблюдается повышение температуры, озноб, лихорадка большей или меньшей степени выраженности. Регистрируются проявления общей интоксикации – головная боль, тошнота, рвота, снижение артериального давления. Симптомы интоксикации организма резко усиливаются при развитии процессов некроза в трансплантате, в тяжелых случаях на этом фоне возможно возникновение токсигенного шока.

Локальные проявления РОТ связаны с пересаженным органом, поэтому могут различаться у разных больных. При трансплантации целого органа на первый план выступают симптомы, обусловленные нарушением его функции – например, кардиалгии, аритмии , сердечная недостаточность при пересадке сердца. Острая почечная недостаточность может быть связана с реакцией отторжения трансплантированной почки, печеночная – печени. При аллотрансплантации кожного лоскута возникает его отек, покраснение вплоть до багрового оттенка, возможно присоединение вторичной бактериальной инфекции. Сроки появления местных и общих симптомов отторжения зависят от его формы – молниеносный тип характеризуется тяжелой реакцией уже через 2-3 часа после трансплантации, тогда как острые и хронические виды могут проявляться через несколько недель или даже месяцев.

Осложнения

Наиболее ранним и тяжелым осложнением реакции отторжения пересаженных тканей является развитие шока, связанного с иммунологическими процессами или обусловленного интоксикацией организма. Некроз и поражение тканей трансплантированного органа, работа которого является жизненно важной для организма (например, сердца), часто приводит к летальному исходу. К осложнениям РОТ некоторые специалисты относят и инфекционные болезни, вызванные усиленной иммуносупрессивной терапией. В отдаленной перспективе на фоне искусственного понижения активности клеточного иммунитета возможно развитие онкологических заболеваний.

Диагностика

Особенностью диагностики реакции отторжения трансплантата является необходимость ее максимально быстрого проведения, позволяющего не только улучшить состояние больного, но и сохранить пересаженный орган. Некоторые исследователи относят к диагностике РОТ ряд иммунологических исследований, выполняемых перед операцией на этапе подбора донора – типирование спектра трансплантационных антигенов, определение биологической совместимости тканей. Качественное выполнение данных анализов позволяет избежать развития сверхострой реакции и значительно снизить вероятность возникновения других форм отторжения. Среди диагностических процедур, выполняемых после трансплантации, наиболее информативными являются следующие:

  • Лабораторные исследования. При процессе отторжения в общем анализе крови будут выявляться признаки неспецифического воспаления – лимфоцитоз, увеличение СОЭ. Исследование иммунного статуса позволяет обнаружить иммунные комплексы, увеличение уровня компонентов комплемента (при молниеносных формах), иммуноглобулинов. Под действием иммуносупрессивной терапии результаты анализов могут искажаться, что необходимо учитывать при их интерпретации.
  • Инструментальные исследования. Инструментальные методы диагностики (рентгенография , УЗИ, УЗДГ , КТ, МРТ) используют для оценки функциональной активности и структуры трансплантата – почки, печени, сердца, легкого. В общем плане РОТ проявляется отеком органа, нарушением его работы, наличием циркуляторных нарушений (ишемии, инфарктов, некроза). При хронических и рецидивирующих типах реакции в структуре трансплантата могут определяться участки склероза.
  • Гистологические исследования. Биопсия тканей аллотрансплантата, их последующее гистологическое и гистохимическое изучение является золотым стандартом в определении РОТ. При молниеносном типе реакции в биоптате выявляются поврежденны е капилляры, периваскулярный отек, признаки ишемии и некроза тканей, биохимические исследования определяют иммунные комплексы на поверхности эндометрия. При хронических или острых типах отторжения обнаруживается лимфоцитарная инфильтрация тканей трансплантата, наличие участков ишемии и склероза.

Подходы к диагностике реакций отторжения могут меняться с учетом конкретного пересаженного органа. Например, при трансплантации почки показаны общий и биохимический анализ мочи, УЗДГ и другие ультразвуковые исследования органа, с осторожностью – экскреторная урография . В случае пересадки сердца необходимо проведение электрокардиографии , ЭхоКГ , коронарной ангиографии .

Лечение реакции отторжения трансплантата

Лечение РОТ заключается в уменьшении активности иммунного ответа, до сих пор продолжается разработка наиболее эффективных методов. Составлением схемы терапии занимается врач-иммунолог в кооперации с трансплантологом . Перспективной техникой считается выработка иммунологической толерантности к антигенам аллотрансплантата, однако ее механизмы довольно сложны и пока недостаточно изучены. Поэтому практически единственным методом лечения и профилактики отторжения является неспецифическая иммуносупрессивная терапия, проводимая несколькими группами лекарственных средств:

  • Стероидные препараты. К этой группе относят преднизолон и его производные, дексаметазон и другие средства. Они снижают скорость пролиферации лимфоцитов, являются антагонистами многих факторов воспаления, эффективно уменьшают выраженность иммунного ответа. В ряде случаев курсовое применение этих препаратов после проведения трансплантации назначают пожизненно.
  • Аналоги азотистых оснований. Данные препараты способны встраиваться в процесс синтеза нуклеиновых кислот и тормозить его на определенном этапе, снижая скорость образования иммунокомпетентных клеток и выраженность процессов отторжения. В целях профилактики их используют вскоре после пересадки органа.
  • Алкилирующие средства. Группа препаратов, способных присоединяться к ДНК клеток и блокировать их деление. Медикаменты применяют при острых формах данного состояния по причине быстрого и надежного цитотоксического эффекта.
  • Антагонисты фолиевой кислоты. Витамин В9 участвует в синтезе некоторых азотистых оснований и пролиферации лимфоцитов, его антагонисты замедляют процесс развития иммунного ответа при РОТ. Средства используют при хронических формах реакции в составе комплексной терапии.
  • Антибиотики. Отдельные препараты данной группы (циклоспорин, хлорамфеникол) блокируют синтез РНК, тормозя как клеточные, так и гуморальные иммунные реакции. Иногда применяются пожизненно после трансплантации для профилактики отторжения.

По показаниям могут быть назначены и другие медикаменты для улучшения состояния больного – детоксикационные препараты, диуретики, стимуляторы сердечной деятельности, противовоспалительные и жаропонижающие средства. При тяжелых осложнениях (шок, острая сердечная или почечная недостаточность) необходимы реанимационные мероприятия , гемодиализ . При присоединении инфекции на фоне иммуносупрессии требуется своевременное назначение антибиотиков, противогрибковых или противовирусных (с учетом характера возбудителя) средств.

Прогноз и профилактика

Прогноз при молниеносных видах реакции отторжения трансплантата практически в 100% случаев неблагоприятный – требуется операция по удалению пересаженного органа, подбор нового донора и повторная трансплантация. В то же время, риск развития РОТ при вторичной пересадке повышается в несколько раз. Своевременно начатая иммуносупрессия при острых или хронических вариантах состояния нередко позволяет сохранить аллотрансплантат, но повышает риск инфекционных осложнений и вероятность возникновения рака в будущем. Эффективной профилактикой отторжения является тщательный подбор донора для пересадки, проверка совместимости по всем возможным антигенным системам – особенно по ГКГС, совместимы должны быть не менее 4-х из 6-ти главных аллелей. Резко снижает вероятность развития патологии наличие прямой кровной родственной связи между донором и реципиентом.

Пересадка тканей или органов от одного индивидуума другому, генетически отличающемуся, или от одной инбредной линии мышей другой, также генетически отличной от линии донора, вызывает реакцию отторжения пересаженного биологического материала. Время отторжения первичного трансплантата - около 14 дней. Вторичный трансплантат отторгается быстрее: приблизительно за 5-7 дней.

Отдельные реакции клеточного иммунитета, представленные выше, имеют свое интегральное проявление при отторжении чужеродной ткани. Собственно реакция отторжения включает два компонента:

Специфический, связанный в основном с активностью цитотоксических T-клеток (CD8 T-клеток) , и

Неспецифический, имеющий характер воспаления.

Рис. 6.

Реакция отторжения трансплантата.

Реакция включает три этапа. На этапе I происходит распознавание антигенов трансплантата предшественниками цитотоксических Т-лимфоцитов (пCD8) и предшественниками хелперных и воспалительных Т-клеток (ТНО). После распознавания клетки мигрируют в ближайшую (региональную) лимфоидную ткань.

В периферической лимфоидной ткани развиваются основные события, приводящие к формированию эффекторов реакции отторжения (этап II). пCD8 трансформируются в эффекторные зрелые цитотоксические Т-клетки (CD8). Свободные трансплантационные антигены, поступающие в лимфоидную ткань, захватываются антигенпрезентирующими клетками (отмечены только макрофаги - МФ) и подключают к ответу как ТН1-, так и ТН2-клетки. При совместном участии антигенпрезентирующих клеток, В-клеток и ТН2 формируется гуморальный иммунный ответ, являющийся дополнительным звеном отторжения. Здесь же происходит сорбция секретируемых антител на поверхности натуральных киллеров (НК), а также активация макрофагов либо под воздействием цитокинов Т-клеток, либо в результате сорбции антител. Активируются также и НК-клетки под воздействием цитокинов Т-лимфоцитов.

На этапе III развиваются основные события трансплантационной реакции - отторжение чужеродной ткани. Отторжение реализуется при участии зрелых CD8 Т-клеток, активированных иммуноглобулинами макрофагов, антителами при участии комплемента, НК клетками, армированными иммуноглобулинами и активированными цитокинами При участии ТН1 в зону отторжения привлекаются макрофаги, обеспечивающие воспалительный компонент реакции отторжения.

Развитие реакции трансплантационного иммунитета состоит из трех этапов (рис. 6):

Распознавание чужеродных антигенов трансплантата,

Созревание и накопление эффекторов трансплантационной реакции отторжения в периферической, ближайшей к трансплантату лимфоидной ткани и

Разрушение трансплантата.

Этап I: распознавание. В процесс распознавания вступают предшественники цитотоксических Т-лимфоцитов и предшественники хелперных и воспалительных Т-клеток (ТН0). После распознавания антигена клетки этих типов мигрируют в ближайшую лимфоидную ткань, например, в регионарный лимфатический узел.

Этап 2: созревание и накопление. В периферической лимфоидной ткани развиваются основные события, приводящие к созреванию и накоплению клеток различных типов - эффекторов реакции отторжения. Предшественники цитотоксических Т-клеток, хелперных Т-клеток и Т-клеток воспаления дифференцируются в зрелые эффекторы.

Процесс распознавания может происходить не только непосредственно в зоне трансплантата, но и в регионарной лимфоидной ткани за счет проникновения в нее антигенов трансплантата. В лимфоидной ткани антиген после усвоения макрофагами и выхода на клеточную поверхность в иммуногенной форме обеспечивает накопление T-клеток воспаления (ТН1) . Этот же антиген, экспрессируясь на поверхности В-клеток, включает хелперные Т-клетки (ТН2) , что обеспечивает накопление специфических антител.

Таким образом, помимо эффекторов клеточного иммунитета в лимфоидной ткани идет процесс формирования эффекторов гуморального иммунного ответа.

Секретируемые антитела могут сорбироваться на поверхности так называемых натуральных киллеров (НК-клеток) - особой популяции лимфоцитов, не имеющих маркеров Т- и В-клеток. Цитофильность антител к НК-клеткам обеспечивается взаимодействием Fc -участка иммуноглобулинов с соответствующим рецептором на поверхности НК-клеток. В результате НК-клетки, связавшие иммуноглобулин, приобретают способность к антителозависимому цитолизу клеток трансплантата.

В процессе развития реакции на трансплантат присходит также активация макрофагов либо под воздействием цитокинов Т-клеток, либо в результате пассивной сорбции иммуноглобулинов на поверхности макрофагов по аналогии с НК-клетками.

Этап III: разрушение. В разрушении и отторжении трансплантата участвуют перечисленные выше клеточные формы и специфические иммуноглобулины.

Цитотоксические Т-лимфоциты и НК-клетки вступают в специфическую реакцию разрушения трансплантата: первые - за счет собственных антигенраспознающих рецепторов, вторые - за счет цитофильных антител. Клетки трансплантата неспецифически лизируются также НК-клетками, активированными цитокинами.

Т-клетки воспаления после взаимодействия с антигенами трансплантата начинают активную секрецию хемотаксического макрофагингибирующего фактора, привлекающего в зону отторжения макрофаги, способные к неспецифическому лизису трансплантата (по своей форме это - типичная реакция воспаления).

Таким образом, в реакцию отторжения трансплантата включаются как специфические участники: CD8 Т-клетки, CD4 Т-клетки воспаления (ТН1), специфические иммуноглобулины, так и неспецифические: активированные макрофаги и натуральные киллеры.

Трансплантация — это акт передачи клеток, тканей или органов из одного организма в другой. Неправильное функционирование системы органов может быть исправлено путем трансплантации органа (например, почки, печени, легких или поджелудочной железы) от донора. Тем не менее, иммунная система остается самым страшным барьером для трансплантации в качестве обычного лечения. Иммунная система разработала сложные и эффективные механизмы борьбы с иностранными агентами. Эти механизмы также участвуют в отказе от трансплантированных органов, которые признаны чужеродными иммунной системой реципиента.

Степень иммунного ответа на трансплантат частично зависит от степени генетической неадекватности между привитым органом и хозяином. Ксенотрансплантаты, которые являются трансплантатами между членами разных видов, имеют наибольшее расхождение и вызывают максимальный иммунный ответ. Автотрансплантаты, которые являются трансплантатами из одной части тела в другую (например, кожные трансплантаты), не являются чужеродными тканями и поэтому не вызывают отторжения. Изотрансплантаты, которые являются трансплантатами между генетически идентичными особями (монозиготными близнецами), также не подлежат отторжению.

Аллотрансплантаты являются трансплантатами между членами одного и того же вида, которые отличаются генетически. Это наиболее распространенная форма трансплантации. Степень, в которой аллотрансплантаты проходят ответ на отторжение трансплантата, зависит, в частности, от степени сходства или гистосовместимости между донором и реципиентом.

Степень и тип ответа также варьируются в зависимости от типа трансплантата. Некоторые органы, такие как глаз и мозг, являются иммунологически привилегированными (то есть, они имеют минимальные или отсутствующие клетки иммунной системы и могут переносить даже несоответствующие имплантаты). Кожные трансплантаты изначально не васкуляризированы, поэтому нет отказа, пока не будет развиваться кровоснабжение. Сердце, почки и печень являются сильными сосудистыми органами и приводят к интенсивному опосредованному клеточным ответом у хозяина.

Антигены, ответственные за отказ от генетически несоответствующих тканей, называются гистосовместимыми антигенами. Они являются продуктами генов гистосовместимости. Гистоконъюгатные антигены кодируются в более чем 40 локусах, но локусы, ответственные за самые сильные реакции отторжения аллотрансплантата, обнаруживаются на основном комплексе гистосовместимости.

У людей основной комплекс гистосовместимости называется системой антигена лейкоцитов человека. Другие антигены вызывают только более слабые реакции, но комбинации нескольких небольших антигенов могут вызывать сильные реакции отторжения. Основные молекулы комплекса гистосовместимости делятся на 2 класса. Молекулы класса I обычно экспрессируются на всех ядерных клетках, тогда как молекулы класса II экспрессируются только на специальных антигенпредставляющих клетках, таких как дендритные клетки, активированные макрофаги и В-клетки. Физиологическая функция молекул основной гистосовместимости состоит в том, чтобы представить антигенные Т-клеточные пептиды, поскольку Т-лимфоциты распознают только антиген, если они представлены в комплексе с основным комплексом гистосовместимости, Молекулы класса I ответственны за представление антигенных пептидов из клетки (например, антигенов из внутриклеточных вирусов, опухолевых антигенов, аутоантигенов) в CD8 T-клетки. Молекулы класса II содержат внеклеточные антигены в качестве внеклеточных бактерий для CD4-T-клеток.

Иммунный ответ на трансплантированный орган состоит из клеточных (опосредованных лимфоцитами) и механизмов, опосредованных гуморальными антителами. Хотя также включены другие типы клеток, Т-клетки являются центральными для реакции отторжения трансплантата. Реакция отбраковки состоит из стадии сенсибилизации и эффекторной стадии.

На стадии сенсибилизации Т-клетки CD4 и CD8 по своим Т-клеточным рецепторам распознают аллогенную экспрессию на чужеродных трансплантационных клетках. Для идентификации антигена необходимы два сигнала. Первый из них обеспечивается взаимодействием Т-клеточного рецептора с антигеном, представленным молекулами комплекса гистосовместимости, а второй — взаимодействием костимулирующего рецептора / лиганда на поверхности Т-клеток.

На стадии сенсибилизации существуют так называемые прямые и косвенные пути, каждый из которых приводит к генерации различных комплексов всех специфических клонов Т-клеток.

В прямом пути Т-клетки хозяина распознают интактные алломолекулы основного комплекса гистосовместимости на поверхности донорной или стимулирующей клетки. Т-клетки хозяина распознают донорскую ткань как чужую. На этот раз, вероятно, доминирующий путь, участвующий в раннем аллоиммунном ответе.

Косвенным способом Т-клетки распознают обработанный аллоантиген, представленный в виде пептидов из отдельных антигенпрезентативных клеток. Вторичные ответы, такие как те, которые происходят при хроническом или позднем острой отторжении, связаны с пролиферативными ответами Т-клеток, включая пептиды, которые ранее были иммунологически молчаливыми. Такое изменение структуры ответов Т-клеток называется переходом или пролиферацией эпитопов.

Алоантиген-зависимые и независимые факторы способствуют эффекторным механизмам на стадии эффектора. Первоначально неиммунологические «реакции на повреждение» вызывают неспецифический воспалительный ответ. Поэтому антигенное представление Т-клеток увеличивается, поскольку экспрессия молекул адгезии, класса II основного комплекса гистосовместимости, хемокинов и цитокинов увеличивается. Это также способствует освобождению неизменных растворимых молекул основного комплекса гистосовместимости. После активации CD4-положительные Т-клетки инициируют реакции гиперчувствительности замедленного типа, опосредованные макрофагами, и обеспечивают В-клетки для продуцирования антител.

После трансплантации активируются различные Т-клетки и цитокины, такие как IL-2 и IFN-γ. Затем были выражены L-хемокины, IP-10 и MCP-1, что способствует интенсивной инфильтрации макрофагов аллотрансплантата. IL-6, TNF-α, индуцибельная синтаза оксида азота и факторы роста также играют определенную роль в этом процессе. Факторы роста, включая TGF-β и эндотелин, вызывают пролиферацию гладких мышц, интимное утолщение, интерстициальный фиброз и трансплантацию почек и гломерулосклероз.

Эндотелиальные клетки, активированные цитокинами и макрофагами, полученными из Т-клеток, экспрессируют класс II основного комплекса гистосовместимости, молекул адгезии и костимулирующих молекул. Они могут представлять собой антиген и, таким образом, набирать больше Т-клеток, усиливая процесс отторжения. CD8-положительные Т-клетки опосредуют клеточно-опосредованные ответы цитотоксичности либо «летальным ударом», либо, наоборот, индукцией апоптоза.

Реакция отторжения трансплантата классифицируется как гиперакустическая, острая и хроническая.

При гиперострой реакции отторжения трансплантата, пересаженные ткани отклоняются в течение нескольких минут до нескольких часов, так как васкуляризация быстро разрушаются. Автоматическое гуморальное отторжение опосредуется и происходит потому, что получатель имеет предварительно существующие антитела против трансплантата, которые могут быть вызваны предыдущим переливанием крови, множественной беременностью, предыдущей трансплантацией или ксенотрансплантатами против людей уже есть антитела. Комплекс антиген-антитело активирует комплементарную систему, вызывая массивный тромбоз в капиллярах, который предотвращает васкуляризацию трансплантата, почки наиболее подвержены чрезмерному отторжению. Печень относительно устойчива, вероятно, из-за двойного кровоснабжения, но, скорее всего, из-за неполных иммунологических свойств.

Острая реакция отторжения трансплантата опосредуется лимфоцитами, которые активируются против донорных антигенов, главным образом в лимфоидных тканях реципиента. Донорные дендритные клетки (также называемые другими лейкоцитами) поступают в кровоток и функционируют как антигенпредставляющие клетки.

Отсроченный ответ на отторжение трансплантата развивается от нескольких месяцев до нескольких лет после того, как эпизоды острого отторжения уменьшились. Оба антитела и клетки опосредованы. Хроническое отторжение происходит как фиброз и рубцевание во всех трансплантированных органах, но конкретный гистопатологический рисунок зависит от трансплантированного органа. При сердечных трансплантатах хроническое отторжение происходит как ускоренный атеросклероз коронарной артерии. Пересаженные легкие появляются как бронхиолит. При трансплантации печени хроническое отторжение характеризуется исчезновением синдрома желчных протоков. У получателей почек хроническое отторжение (называемое хронической аллотрансплантационной нефропатией) происходит как фиброз и гломерулопатия.

Гистологические изменения реакции отторжения трансплантата происходят в несколько этапов:

  • Ранняя стадия — воспалительная инфильтрация в трансплантации вокруг капилляров и венулей лимфоцитов, макрофагов и плазматических клеток. Тромбоз развивается в сосудах трансплантата, что приводит к ишемии тканей и началу ее разрушения.
  • На 2-3-й день периваскулярный воспалительный инфильтрат увеличивается в количестве в результате инвазии новых клеток и пролиферации существующих клеток. Здесь доминируют лимфоциты, плазматические клетки и пирофильные клетки. Фиброноидный некроз, который вызывает тромбоз в новых сосудах, часто развивается в стенках сосуда.
  • Конечная стадия — лейкоциты и макрофаги появляются в воспалительном инфильтрате. Повреждение мембраны трансплантата происходит в трансплантации из-за ферментов, высвобождаемых из активированной мембраны лимфоцитов. Это приводит к нарушению калийно-натриевого насоса целевой клетки с последующим набуханием и дезинтеграцией. Распад клеточных и тканевых компонентов трансплантата приводит к обнаружению его антигенных структур, которые индуцируют иммунный ответ, превращая иммунный ответ в порочный круг.
  • Отказ трансплантата — термин для аллогенного отторжения трансплантата составляет 7-14 дней.
Оглавление темы "Аутоиммунные реакции. Реакции гиперчувствительности. Трансплантационный иммунитет.":









Отторжение трансплантанта. Реакция отторжения трансплантата. Клеточные реакции отторжения трансплантата. Аллоантитела. Типирование антигенов (Аг).

Большинство случаев отторжения трансплантата обусловлено Т-клеточными реакциями организма-реципиента. Повторная иммунизация Аг МНС в большинстве случаев вызывает образование аллоантител .

Клеточные реакции отторжения трансплантата

Ведущая роль клеточных реакций была установлена при изучении кожных и опухолевых трансплантатов в эксперименте. Оказалось, что они резистентны к действию AT, но подвержены повреждающему действию цитотоксических клеток. Более того, цитотоксические реакции против трансплантата можно индуцировать переносом сенсибилизированных лимфоцитов.

Аллоантитела

Аллоантитела (агглютинины или цитотоксины ) обусловливают цитотоксический эффект в отношении эндотелия сосудов донорских органов. AT вызывают повреждение эндотелия за счёт активации комплемента и реакций антителозависимой клеточной цитотоксичности. Реакции отторжения также можно индуцировать введением антисыворотки к Аг трансплантата.

Антигенный барьер - важнейшее препятствие для развития клинической трансплантологии и основной фактор, ограничивающий её успехи. Наибольшее значение в приживлении трансплантата имеют антигенные различия между донором и реципиентом.

Типирование антигенов (Аг)

Основной метод определения спектра трансплантационных Аг - постановука микролимфоцитотоксической реакции с лимфоцитами обследуемых и набором антисывороток к отдельным антигенным детерминантам (в присутствии комплемента). Наборы антисывороток получают отбором сывороток лиц, содержащих анти-HLA-AT, образовавшиеся вследствие переливаний крови или повторных беременностей резус-несовместимым плодом. Каждая сыворотка содержит AT к нескольким Аг.

Поэтому для установления антигенной характеристики клеток нужно использовать несколько сывороток, выявляющих данный Аг. Б последнее время проводятся попытки получения моноспецифических сывороток иммунизацией людей лимфоцитами, отличающимися от собственных лишь по одному трансплантационному Аг.

При учёте результатов используют упрощённую классификацию степени несовместимости донора и реципиента , в которой группа А обозначает полное их соответствие, В - несовместимость по одному Аг, С - по двум и D - по трём и более основным Аг.

Реакцию отторжения трансплантата можно ослабить правильным подбором пары донор-реципиент

Идеальная пара для пересадки — это изогенные донор и реципиент, например однояйцевые близнецы. Однако возможность подобрать такую пару встречается редко, и в большинстве случаев существуют различия между донором и реципиентом по МНС и/или минорным локусам гистосовместимости. На практике достаточно подобрать пару, совместимую по главным антигенам (МНС, у человека HLA). Проверить совместимость можно при помощи серологического типирования (рис. 27.19), постановка которого требует всего лишь нескольких часов и поэтому может быть осуществлена в течение срока хранения донорского органа во льду. Недавно был разработан новый, чувствительный и точный метол типирования с использованием полимеразной цепной реакции (ПЦР; см. гл. 29), позволяющий идентифицировать гены HLA донора и реципиента.

Рис. 27.19. Серологическое типирование тканей производят при помощи микролимфоцитотоксического теста. К испытуемым клеткам добавляют типирующие сыворотки (например, анти-HLA-В8), комплемент и краситель трипановый синий. Гибель клеток, определяемая по их окрашиванию, говорит о том, что тест-клетки несут определяемый антиген (в данном случае HLA-B8). На микрофотографии справа видны окрашенные трипа- новым синим (темные) погибшие клетки.

Обеспечить совместимость по всем известным антигенам HLA практически невозможно, однако хорошие результаты удается получить в тех случаях, когда донор и реципиент имеют одни и те же МНС-антигены класса II, особенно если это антигены HLA-DR (рис. 27.20) — они непосредственно активируют Тх-клетки реципиента.

Рис. 27.20. На рисунке представлены результаты двух разных исследований, в которых определяли выживаемость трансплантированных трупных почек через 1 год после пересадки. В первой работе (Евротрансплантат) доноров типировали по антигенам HLA-A и HLA-B (класс I). Во втором исследовании (Оксфорд) производили типирование доноров по антигенам HLA-DR (класс II).

Число известных к настоящему времени HLA-антигенов класса I (HLA-A, HLA-B и HLA-C) и класса II (HLA-DP, HLA-DQ и HLA-DR) достаточно велико (рис. 27.21), так что полная совместимость двух выбранных случайным образом индивидов крайне маловероятна.

Рис. 27.21. У человека идентифицировано примерно 80 различных молекул класса I (HLA-A, HLA-B и HLA-C) и свыше 35 разных молекул класса II (HLA-DP, HLA-DQ и НLA-DR). При помощи молекулярно-генетических методов удается обнаружить гораздо больше вариантов. Однако не все из этих новых вариантов можно различить серологически.

Для определения реактивности лимфоцитов реципиента в отношении антигенов, экспрессируемых клетками донора, можно использовать также реакцию смешанной культуры лимфоцитов (СКЛ) (рис. 27.22). Слабая реакция в смеси клеток донора и реципиента ассоциируется с отличной выживаемостью трансплантата. Однако постановка реакции СКЛ занимает 4-5 сут, что служит серьезным препятствием для ее использования в клинике — органы, полученные от трупа или больного, смерть которого зарегистрирована по прекращению функционирования головного мозга, не могут сохраняться более 24-48 ч. Тест СКЛ можно применять в тех случаях, когда орган взят от живого донора (например, родственника). Результаты этой реакции особенно важны при трансплантации костного мозга, так как они позволяют установить, способны ли клетки костного мозга донора реагировать на антигены реципиента и вызывать РТПХ.

Рис. 27.22. В реакции смешанной культуры лимфоцитов тест-клетки инкубируют с «типирующими» клетками известной HLA-специфичности (в данном случае DR4,4). Клетки DR3,7 распознают типирующие клетки как чужеродные; это можно определить по трансформации и пролиферации типируемых клеток (типирующие клетки заранее обрабатывают таким образом, что сами они не могут делиться при взаимодействии с тест-клетками). В отличие от этого клетки DR4,7, имеющие такую же специфичность, как типирующие клетки (DR4), не распознают типирующие клетки и не реагируют на них.

Реакцию отторжения трансплантата можно предотвратить неспецифической иммуносупрессией

Существуют две формы иммуносулрессивной обработки — антиген-неспецифическая и антиген-специфическая. Путем неспецифической иммуносупрессии можно подавить или ослабить активность иммунной системы по отношению ко всем антигенам, однако при этом повышается чувствительность реципиента трансплантата к инфекциям. Так, Х-облучение в высокой дозе предотвращает отторжение, но одновременно вызывает ряд неблагоприятных эффектов, включая угнетение противомикробного иммунитета. Большинство неспецифических иммуносупрессивных агентов, применяемых в настоящее время, — это препараты, оказывающие избирательное воздействие на иммунную систему или действующие в той или иной степени избирательно благодаря использованию их по определенной схеме. В будущем такой подход будет усовершенствован, чтобы можно было элиминировать только те клоны лимфоцитов, которые специфичны к антигенам донора, оставляя другие клоны интактными. Это позволит сохранять защиту от инфекций и избегать других побочных эффектов. Такая высокоспецифическая иммуносупрессия пока остается для трансплантационной иммунобиологии своего рода чашей Грааля (см. ниже).

В клинической практике сейчас наиболее широко применяются неспецифические иммуносупрессивные агенты трех типов — стероиды, циклоспорин иазатиоприн (рис. 27.23).

Рис. 27.23. Широко используемые в клинике агенты - стероиды, циклоспорин и азатиоприн - подавляют реакцию отторжения разными путями. Стероиды обладают противовоспалительными свойствами - угнетают функции макрофагов и АПК, снижая также экспрессию антигенов МНС. Циклоспорин блокирует продукцию цитокинов; азатиоприн подавляет пролиферацию активированных клеток.

Стероиды обладают противовоспалительными свойствами, супрессируют активированные макрофаги, угнетают функции АПК и снижают экспрессию антигенов МНС. Такое действие стероидов обусловлено тем, что они могут отменять многие эффекты ИФγ в отношении макрофагов и трансплантированных тканей.

Циклоспорин — это циклический полипептидный антибиотик, продуцентами которого служат почвенные грибы. Он обладает высокой иммуносупрессивной активностью. Основное в действии циклоспорина — это подавление синтеза лимфокинов (в результате влияния на активацию генов лимфокинов) и прямое или опосредованное снижение экспрессии рецепторов ИЛ-2 лимфоцитами, получившими сигнал активации. Другие продуцируемые грибами циклические полипептидные антибиотики, например FK506 (такролимус) и рапамицин, также обладают иммуносупрессивными свойствами. Антибиотик FK506 подавляет продукцию лимфокинов Тх-клетками, обладая сходным с циклоспорином механизмом действия. Рапамицин блокирует пути внутриклеточной передачи сигнала с рецептора ИЛ-2 и тем самым угнетает ИЛ-2-зависимую активацию лимфоцитов. Структура циклоспорина, FK506 и рапамицина показана на рис. 27.24.

Рис. 27.24. Иммупосупрессивные циклические полипептидные антибиотики, продуцируемые грибами, различны по структуре и различным образом действуют на лимфоциты: циклоспорин и FK506 угнетают образование лимфокинов, а рапамицин блокирует передачу сигнала, осуществляемую при участии рецептора к ИЛ-2 (ИЛ-2Р).

Реакция отторжения трансплантата связана с быстрым делением и дифференцировкой — пролиферацией — лимфоцитов. Воздействовать на нее можно с помощью антипролиферативного агента азатиоприна. Продукт его метаболизирования включае тся в ДНК делящихся клеток, препятствуя их дальнейшей пролиферации. Сейчас изучаются новые антипролиферативные препараты, в частности производные микофеноловой кислоты.

Все эти иммупосупрессивные агенты могут быть эффективны как монотерапевтические средства, однако для получения желаемого результата требуется их введение в высоких дозах, из-за чего возрастает вероятность возникновения побочных токсических эффектов. При использовании в сочетаниях иммунодепрессанты дают синергичный эффект, так как влияют на разные стадии одного и того же иммунного процесса. Поэтому дозы отдельных компонентов комбинации можно уменьшать, сводя тем самым к минимуму побочные реакции. Применение циклоспорина существенно улучшило результаты трансплантации в клинике (выживаемость трансплантатов почек, сердца и печени достигает 1 года в 85—90 % случаев). Однако время полужизни трансплантированных почек по-прежнему составляет 7—8 лет, поскольку использование циклоспорина не решило проблемы хронического отторжения, а длительное применение этого препарата все же сопряжено с побочными эффектами. Дальнейших успехов следует ожидать от введения в клиническую практику новых лекарственных препаратов.

Сейчас проводится изучение новых агентов, также обладающих неспецифическими иммуносупрессивными свойствами, но действующих более избирательно (рис. 27.25). Для элиминации клеток или блокирования их функции могут быть использованы моноклональные антитела к антигенам клеточной поверхности, в частности к CD3, CD4, CD8 и рецептору ИЛ-2. С целью повышения эффективности этих антител их можно конъюгировать с цитотоксическими агентами. Другой, подобный этому подход заключается в соединении токсина с ИЛ-2: экспрессирующие рецептор ИЛ-2 клетки, активация которых происходит при ответе на антигены трансплантата, связывают конъюгат ИЛ-2-токсин и избирательно инактивируются токсином.

Рис. 27.25. Антитела и лимфокины могут направленно действовать на определенные клетки иммунной системы. В отличие от этого лекарственные средства способны оказывать нежелательное влияние на нелимфоидные ткани, например обладать нефро- и гепатотоксичностью. Эффективность биологических агентов повышается при соединении их с химическими агентами или токсинами. (DAF - фактор, ускоряющий диссоциацию, от англ. decay accelerating tactor; МСР - мембранный кофакторный белок, от англ. membrane cofactor protein.)

Специфическая иммуносупрессия ослабляет иммунный ответ на трансплантат, не вызывая повышения чувствительности к инфекциям

Регуляция интенсивности, типа и специфичности иммунологических реакций происходит различными путями по механизму обратной связи (см. гл. 13). В эксперименте можно предотвратить отторжение трансплантата, воздействуя на эти пути регуляции с помощью трех классических приемов: индукции толерантности в неонатальный период, активного усиления и пассивного усиления толерантности.

Введение антигенов донора новорожденным животным может индуцировать у них ареактивность к трансплантату . У грызунов, в противоположность человеку, зрелые Т-клетки начинают покидать тимус уже в неонатальный период (соответствующая стадия развития у человека приходится на 16—20 нед внутриутробного развития). Если новорожденным мышам ввести постоянный источник антигена (например, живые клетки, способные к росту) или вводить антиген многократно, развитие зрелых Т-клеток, которые реагируют с данным антигеном, подавляется. В классической постановке опыт производят следующим образом. Клетки костного мозга мышей (А х В)F1 вводят новорожденным мышам лиши В. (Использование клеток гибридов F1 исключает РТПХ анти-В, которая возникает, если вместо клеток (А х B)F1 мышам линии В ввести клетки мышей линии А.) Трансплантированный костный мозг служит постоянным источником донорских антигенов. Когда мыши линии В достигают" взрослого состояния, они оказываются ареактивными к антигенам А, воздействию которых подверглись в постнатальный период. Эти животные характеризуются толерантностью к антигенам А кожного трансплантата и других тканей доноров линии А или (А х B)F1. Механизм неонатальной индукции толерантности представлен на рис. 27.8 и детально описан в гл. 12.

Антиген может избирательно активировать некоторые субпопуляции лимфоцитов. Согласно современным представлениям, Тх-клетки делятся на две основные популяции — Тх1 и Тх2 (см. гл. II). Мыши с неонатально индуцированной толерантностью могул иметь дефицит донор-специфических Tx1- и повышенное число донор-специфических Тх2-лимфоцитов. Как показано на рис. 27.23, Tx1-клетки продуцируют ИФγ и ИЛ-2 и участвуют в отторжении трансплантата. В противоположность этому Тх2-клетки образуют другие лимфокины, включая ИЛ-10 и фактор, подавляющий синтез лимфокинов клетками Tx1. Наличие немногочисленных Tx1-клеток и боль- шогочислаТх2-клетокдонораутаких мышей означает изменение баланса между процессами отторжения и приживления трансплантата, которое ведет к развитию толерантности. Строго говоря, эта форма толерантности представляет собой не ареактивность per se, а скорее иммунное отклонение. Интересно, что циклоспорин может действовать преимущественно на Tx1-клетки, оставляя интактными Тх2.

И, наконец, антиген может активировать супрессорные Т-клетки (Тс-клетки). Их природа все еще остается неясной. Единственное наблюдение, свидетельствующее об активности Тс-клеток, состоит в том, что перенос Т-лимфоцитов, полученных от донора, толерантного к кожному трансплантату А, предотвращает у реципиента отторжение трансплантата, несущего антигены А. Это означает адоптивный перенос супрессии, и ответственными за эффект клетками могут быть Тх- или Тс-лимфоциты. Экспериментальные данные с определенностью указывают, что Т-клетки, выполняющие супрессивную функцию, существуют, однако мнения о природе Тс-клеток и механизмах их действия весьма противоречивы. Эти клетки резистентны к циклоспорину и могут способствовать его эффектам, опосредуя толерантность благодаря активной иммуносупрессии.

Специфическая иммуносупрессия у человека . Состояние, эквивалентное неонатально индуцированной толерантности животных, у человека получить невозможно. Однако сходная до некоторой степени ситуация возникает при использовании специальных методов воздействия на иммунную систему человека. Общее облучение лимфоидной ткани (ООЛ) ведет к ее резкому истощению, а применяемое при этом экранирование (защита) костного мозга сохраняет гемопоэз неповрежденным. В результате у человека возникает состояние, напоминающее неонатально индуцированную толерантность у грызунов. Действительно, ООЛ с последующим введением антигена вызывает развитие глубокой толерантности Однако использовать ООЛ в повседневной клинической практике довольно опасно. При пересадке сердца широко применяют антилимфоцитарную сыворотку, получаемую от животных, иммунизированных лимфоцитами человека. Эффект такой сыворотки состоит в элиминации циркулирующих Т-клеток реципиента. Более безопасно, но столь же эффективно позволяют элиминировать Т-клетки моноклональные антитела к антигенам зрелых Т-лимфоцитов, и в клинике нашли применение антитела анти-СD3.

У человека ареактивность к трансплантату можно индуцировать при помощи гемотрансфузий . В некоторых случаях выживаемость трансплантата удается продлить, иногда на неопределенно долгое время, предварительным введением антигенов донора (рис. 27.26). Это противоположно тому, чего можно было бы ожидать от иммунизации реципиента антигенами донора — ускоренного или сверхострого отторжения трансплантата. Данный феномен получил название активного усиления выживаемости трансплантата. Большое значение имеет путь введения антигена, что обусловлено, по-видимому, вовлечением в реакцию разных отделов лимфоидной ткани. Так, в опытах с трансплантацией почек у крыс было установлено, что внутривенное введение крови донора реципиенту за неделю до трансплантации обеспечивает долговременную выживаемость трансплантированного органа, тогда как при подкожной инъекции то же количество донорской крови вызывает ускоренное отторжение. Эффект иммунологически специфичен, поэтому донор крови и донор почки должны иметь по крайней мере некоторые общие антигены.

Рис. 27.26. Предварительное внутривенное введение реципиентам антигенов донора может повысить выживаемость пересаженного вслед за этим аллотрансплантата. Этот феномен носит название активного иммунного усиления толерантности, так как обусловлен активным иммунным ответом реципиента. (Следует отметить, что при другом пути введения крови того же донора может произойти быстрое отторжение трансплантата.) В отличие от этого введение реципиенту антидонорских антител во время трансплантации способно вызвать пассивное усиление толерантности. Как активное, так и пассивное усиление иммунологически специфичны, поскольку подавляется реакция лишь на антигены данного донора; продления выживаемости (усиления) трансплантата «третьего порядка», т. е. взятого у постороннего, неродственного донора, при этом не происходит.

В клинике нашел применение метод активного усиления толерантности — путем предварительной трансфузии донор-специфичной крови (ТДК). Например, перед трансплантацией почки одного из родителей ребенку трансфузируют кровь этого родителя. К сожалению, примерно у 20 % больных, которым производят ТДК, образуются антидонорские антитела и запланированную пересадку почки невозможно осуществить вследствие риска развития реакции сверхострого отторжения. Однако у остальных 80 % больных трансплантация оказывается успешной в 95-100 % случаев.

Благоприятный эффект переливания крови до трансплантации (гемотрансфузионный эффект) отмечен также у реципиентов, получивших кровь не подобранного специально донора (т. е. когда донор крови не является донором трансплантируемого органа). По-видимому, этот эффект обусловлен случайной общностью антигенов доноров крови и трансплантата (рис. 27.27). В пользу такого объяснения говорят данные о том, что гемотрансфузионный эффект возрастает с увеличением числа переливаний крови, взятой у разных допоров. В свое время в большинстве центров трансплантации была принята стратегия предварительной трансфузии крови любых доноров будущим реципиентам. Однако при этом всегда существовал риск сенсибилизации пациентов и передачи СПИДа: ставшее доступным применение иммунодепрессивных агентов сделало эту процедуру в большинстве случаев излишней.

Рис. 27.27. Выживаемость трансплантированной почки у больных (102 человека), которым до трансплантации трансфузировали донорскую кровь, более продолжительна, чем у больных (71 человек), не получавших гемотрансфузии.

Для активного усиления необходимо, чтобы у больного возникла активная иммунная реакция па введенные антигены донора. Возможные механизмы этою — индукция анергии, избирательная активация Тх2-клеток или активация Тс-клеток под влиянием антигенов крови, которые имеют место при неонатально индуцированной толерантности. В других случаях возможно образование «усиливающих антител», которые, блокируя распознавание специфических антигенов донора, подавляют процесс отторжения трансплантата или разрушают высокоиммуногенные лейкоциты-«пассажиры». содержащиеся в трансплантате. Может происходить и образование таких усиливающих антител, которые взаимодействуют с антигенными рецепторами клеток, реактивных по отношению к антигенам донора; эти клетки элиминируются или же изменяется презентация антигенов таким образом, что после трансплантации избирательно активируются определенные субпопуляции, например Тх2- и Тс-лимфоциты.

В организме реципиента трансплантата антитела могут осуществлять регуляцию по механизму обратной связи. Введение антидонорских антител (пассивное усиление) крысам при трансплантации почки может обеспечить долговременную выживаемость пересаженного органа (рис. 27.26).

Вопросы для размышления

■ Чем отличаются реакции, индуцированные в результате прямой активации Т-клеток реципиента комплексом антигенный пептид донора - молекула МНС донора, от реакций, развивающихсяпри непрямой активации комплексом пептид донора - молекула МНС реципиента?

■ Гемотрансфузия, произведенная до трансплантации, может продлить выживаемость трансплантата благодаря возникновению иммунологической ареактивности. Однако у некоторых больныхобразуются антитела к чужеродным клеткам крови донора, в связи с чем трудно рассчитывать на успех последующей трансплантации органа. Каким образом можно предотвратить продукцию антидонорских антител?

■ Эффекторные механизмы хронического и острого отторжения различаются. Какие изменения нужно внести в схему лечения, чтобы избежать хронического отторжения?

■ Первый барьер при ксенотрансплантации создают ранее образованные у реципиента антитела против антигенов донора. Предположим, что можно избежать развития сверхострого отторжения, например при трансплантации человеку органов свиньи. Однако существует вероятность возникновения клеточной реакции. Чем будут отличаться процессы распознавания чужеродных антигенов при ксено-и аллотрансплантации?

■ В чем состоят механизмы, способствующие отторжению трансплантата при прямом и непрямом способах иммунизации?

■ Какая комбинация лекарственных препаратов, антител и антигенов оказалась бы, по вашему мнению, наиболее эффективной при пересадке гистонесовместимого трансплантата?

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

Alexander G.P.J., Latime D., Gianello P. et al. 1991. Preformed cytotoxic antibodies and ABO-incompatible grafts. Clin. Transplant. 5: 583.

Bach F.H. 1991. Xenotransplantation: problems for consideration. Clin. Transplant. 5: 595.

Bjorkman P.J., Saper M.A., Samaouri B. et al. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512.

Burdick J.F. 1991. Chronic rejection Clin. Transplant. 5: 489.

Concar D. 1994. The organ factory of the future? New Scientist 1930: 24-29.

Dallman M.J., Clark G.J. 1991. Cytokines and their receptors in transplantation. Curr. Opin. Immunol. 3. 729.

Graff R.J., Bailey D.W. 1973. The non-H-2 histocompatibility loci and their antigens. Transplant. Rev. 15: 26-49.

Hall B.M., Dorsch S., Roser B. 1978. The cellular basis of allograft rejection in vivo. I. The cellular requirements for first set rejection of heart grafts. J. Exp. Med. 148: 878.

Halloran P.F. Broski A.P., Batiuk T.D. et al. 1993. The molecular immunology of acute rejection: an overview. Transplant. Immunol. 1: 3-27.

Hunt S., Billingham М. 1991. Long-term results of cardiac transplantation. Ann. Rev. Med. 42: 437.

Hutchinson I.V. 1991. Cellular mechanisms of allograft rejection. Cure Opin. Immunol. 3: 722.

Lechler R.I., Lombardi G., Batchelor J.R. et al. 1990. The molecular basis of alloreactivity. Immunol. Today 11:83.

Mason D.W., Morris P.J. 1986. Effector mechanisms in allograft rejection. Annu. Rev. Immunol. 4: 119.

Masoor S., Schroeder T.J., Michler R.E. et al. 1986. Monoclonal antibodies in organ transplantation: an overview. Transplant. Immunol. 4: 176-89.

Opelz G. 1989. Effect of HLA matching in heart transplantation. Transplant. Proc. 21: 794.

Piatt J.L., Bach F.H. 1991. The barrier to xenotransplantation. Transplantation 52: 937.

Sablinski T., Hancock W.W., Tilney N.L. et al. 1991. CD4 monoclonal antibodies in organ transplantation. A review of progress. Transplantation 52: 579.

Sachs D.H., Bach F.H. 1990. Immunology of xenograft rejection. Human Immunol. 28: 245.

Stemmuller D. 1985. Which T cells mediate allograft rejection? Transplantion 40: 229.

Thomson A.W. 1994. Immunosuppressive drugs and the induction of transplantation tolerance. Transplant. Immunol. 2: 263-70.

Waldman H., Cobbold S. 1993. The use of monoclonal antibodies to achieve immunological tolerance. Immunol. Today 14: 247-51.

Waldmann H. 1989. Manipulation of T-cell responses with monoclonal antibodies. Annu. Rev. Immunol. 7: 407.