Вокруг каких зарядов существует магнитное поле. Подготовила И.А


Вокруг любого проводника с током, т.е. движущихся электрических зарядов, существует магнитное поле. Ток следует рассматривать как источник магнитного поля! Вокруг неподвижных электрических зарядов существует только электрическое поле, а вокруг движущихся зарядов – и электрическое, и магнитное. ХАНС ЭРСТЕД ()


1. Магнитное поле возникает только около движущихся электрических зарядов. 2. Оно ослабевает по мере удаления от проводника с током (или движущегося заряда) и точных границ поля указать нельзя. 3. Действует на магнитные стрелки определённым образом 4. Обладает энергией и имеет свою внутреннюю структуру, которая отображается с помощью магнитных силовых линий. Магнитные линии магнитного поля тока представляют собою замкнутые линии, охватывающие проводник


Если контура с током последовательно соединить в одном месте пространства, то такое образование называется соленоидом. Магнитное поле сконцентрировано внутри соленоида, снаружи рассеяно, и магнитные силовые линии внутри соленоида параллельны между собой и поле внутри соленоида считается однородным, вне соленоида - неоднородным. Поместив внутрь соленоида стальной стержень, мы получим простейший электромагнит. При прочих равных условиях магнитное поле электромагнита гораздо сильнее магнитного поля соленоида.




Совпадают ли магнитные полюсы Земли с географическими полюсами? Менялось ли местоположение магнитных полюсов в истории планеты? Что является надёжным защитником жизни на Земле от космических лучей? В чём заключена причина появления магнитных бурь на нашей планете? С чем связаны магнитные аномалии? Почему магнитная стрелка имеет вполне определённое направление в каждом месте Земли? Куда она указывает?

Основные понятия : магнитное поле, опыт Эрстеда, магнитные линии.

Чтобы изучить магнитное действие электрического тока, воспользуемся магнитной стрелкой. У магнитной стрелки есть два полюса: северный и южный . Линию, соединяющую полюсы магнитной стрелки, называют ее осью .

Рассмотрим опыт, показывающий взаимодействие проводника с током и магнитной стрелки. Такое взаимодействие впервые обнаружил в 1820 г. датский ученый Ханс Кристиан Эрстед (рис.1). Его опыт имел большое значение для развития учения об электромагнитных явлениях.

Рис.1. Ханс Кристиан Эрстед.

Расположим проводник, включенный в цепь источника тока, над магнитной стрелкой параллельно ее оси (см. рис.2).


Рис.2. Опыт Эрстеда.

При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения. При размыкании цепи магнитная стрелка возвращается в свое начальное положение. Это означает, что проводник с током и магнитная стрелка взаимодействуют друг с другом.

Выполненный опыт наводит на мысль о существовании вокруг проводника с электрическим током магнитного поля . Оно действует на магнитную стрелку, отклоняя ее.

Магнитное поле существует вокруг любого проводника с током, т.е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неотделимы друг от друга.

Таким образом, вокруг неподвижных электрических зарядов существует только электрическое поле, вокруг движущихся зарядов, т.е. электрического тока, существует и электрическое , и магнитное поле . Магнитное поле появляется вокруг проводника, когда в последнем возникает ток, поэтому ток следует рассматривать как источник магнитного поля. В этом смысле надо понимать выражения «магнитное поле тока» или «магнитное поле, созданное током».

Существование магнитного поля вокруг проводника с электрическим током можно обнаружить различными способами. Один из таких способов заключается в использовании мелких железных опилок.

В магнитном поле опилки - маленькие кусочки железа - намагничиваются и становятся магнитными стрелочками. Ось каждой стрелочки в магнитном поле устанавливается вдоль направления действия сил магнитного поля.

На рисунке 3 изображена картинка магнитного поля прямого проводника с током. Для получения такой картины прямой проводник пропускают сквозь лист картона. На картон насыпают тонкий слой железных опилок, включают ток и опилки слегка встряхивают. Под действием магнитного поля тока железные опилки располагаются вокруг проводника не беспорядочно, а по концентрическим окружностям.

Рис.3. Магнитные линии прямого тока.

Магнитные линии - это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок. Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии.

Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля. Магнитные линии магнитного поля тока представляют собой замкнутые, концентрические окружности.

С помощью магнитных линий удобно изображать магнитные поля графически. Так как магнитное поле существует во всех точках пространства, окружающего проводник с током, то через любую точку можно провести магнитную линию .

На рисунке 3,апоказано расположение магнитных стрелок вокруг проводника с током. (Проводник расположен перпендикулярно плоскости чертежа, ток в нем направлен от нас, что условно обозначено кружком с крестиком.) оси этих стрелок устанавливаются вдоль магнитных линий магнитного поля прямого тока. При изменении направления тока в проводнике все магнитные стрелки поворачиваются на 180 0 (рис. 3,б; в этом случае ток в проводнике направлен к нам, что условно обозначено кружком с точкой.) Из этого опыта можно заключить, что направление магнитных линий магнитного поля тока связано с направлением тока в проводнике .

Магнитное поле прямого тока. Магнитные линии. ()

Перейти к конспектов за 8 класс.

Домашнее задание по этой теме:

А.В. Перышкин, Е.М. Гутник,Физика 9, Дрофа, 2006: § 56, § 57.

Термином «поле» в русском языке обозначают очень большое пространство однородного состава, например, пшеничное или картофельное.

В физике и электротехнике его используют для описания различных видов материи, например, электромагнитной, состоящей из электрической и магнитной составляющих.

Электрический заряд связан с этими формами материи. Когда он неподвижен, то вокруг него всегда есть электрическое поле, а при движении образуется еще и магнитное.

Представление человека о природе электрического (более точное определение - электростатического) поля сложилось на основе исследований опытным путем его свойств, ибо другого метода изучения пока не существует. При этом способе выявлено, что оно воздействует на движущиеся и/или неподвижные электрические заряды с определенной силой. По измерениям ее величины оценивают основные эксплуатационные характеристики.

Электрическое поле

Оно образуется:

    вокруг электрических зарядов (тел или частиц);

    при изменениях магнитного поля, как, например, происходит во время перемещения .

Изображают его силовыми линиями, которые принято показывать исходящими из положительных зарядов и оканчивающимися на отрицательных. Таким образом, заряды являются источниками электрического поля. По действию на них можно:

    выявить наличие поля;

    ввести калиброванную величину для измерения его значения.

Для практического использования выбрана силовая характеристика, называемая напряженностью , которая оценивается по действию на единичный заряд положительного знака.

Оно действует на:

    электрические тела и заряды, находящиеся в движении с определённым усилием;

    магнитные моменты без учета состояний их движения.

Магнитное поле создается:

    прохождением тока заряженных частиц;

    суммированием магнитных моментов электронов внутри атомов или других частиц;

    при временно?м изменении электрического поля.

Его тоже изображают силовыми линиями, но они замкнуты по контуру, не имеют начала и конца в противоположность электрическим.

Взаимодействие электрического и магнитного полей

Первое теоретическое и математическое обоснование процессов, происходящих внутри электромагнитного поля, выполнил Джеймс Клерк Максвелл. Он представил систему уравнений дифференциальной и интегральной форм, в которых показал связи электромагнитного поля с электрическими зарядами и протекающими токами внутри сплошных сред либо вакуума.

В своем труде он использовал законы:

    Ампера, описывающие протекание тока по проводнику и создание вокруг него магнитной индукции;

    Фарадея, объясняющего возникновение электрического тока от воздействия переменного магнитного поля на замкнутый проводник.


Труды Максвелла определили точные соотношения между проявлениями электрических и магнитных полей, зависящих от распределенных в пространстве зарядов.

После публикации работ Максвелла прошло уже много времени. Ученые постоянно изучают проявления опытных фактов между электрическими и магнитными полями, но даже сейчас не особо получается выяснить их природу. Результаты ограничиваются чисто практическим применением рассматриваемых явлений.

Объясняется это тем, что с нашим уровнем знаний можно только строить гипотезы, ибо пока мы способны лишь предполагать что-то. Ведь природа обладает неисчерпаемыми свойствами, которые еще предстоит много и длительно изучать.

Сравнительная характеристика электрического и магнитного полей

Источники образования

Взаимную связь между полями электричества и магнетизма помогает понять очевидный факт: они не обособленны, а связаны, но могут проявляться по-разному, являясь единым целым - электромагнитным полем.

Если представить, что в какой-то точке пространства создано неоднородное поле электрического заряда, неподвижное относительно поверхности Земли, то определить вокруг него магнитное поле в состоянии покоя не получится.

Если же наблюдатель начнет перемещаться относительно этого заряда, то поле станет меняться по времени и электрическая составляющая образует уже магнитную, которую сможет увидеть своими измерительными приборами настойчивый исследователь.

Аналогичным образом эти явления проявятся тогда, когда на какой-то поверхности расположен неподвижный магнит, создающий магнитное поле. Когда наблюдатель станет перемещаться относительно него, то он обнаружит появление электрического тока. Этот процесс описывает явление электромагнитной индукции.

Поэтому говорить о том, что в рассматриваемой точке пространства имеется только одно из двух полей: электрическое или магнитное, не имеет особого смысла. Этот вопрос надо ставить применительно к системе отсчета:

    стационарной;

    подвижной.

Другими словами, система отсчета влияет на проявление электрического и магнитного поля таким же образом, как рассматривание пейзажей сквозь светофильтры различных оттенков. Изменение цвета стекол влияет на наше восприятие общей картинки, но, оно, даже если принять за основу естественный свет, создаваемый проходом солнечных лучей через воздушную атмосферу, не даст истинной картины в целом, исказит ее.

Значит, система отсчета является одним из способов изучения электромагнитного поля, позволяет судить о его свойствах, конфигурации. Но, она не обладает абсолютной значимостью.

Индикаторы электромагнитных полей

Электрическое поле

Электрически заряженные тела используют в качестве индикаторов, указывающих на наличие поля в определенном месте пространства. Ими, для наблюдения электрической составляющей, могут использоваться наэлектризованные мелкие кусочки бумаги, шарики, гильзы, «султаны».

Рассмотрим пример, когда по обе стороны плоского наэлектризованного диэлектрика расположены на свободном подвесе два индикаторных шарика. Они будут одинаково притягиваться к его поверхности и вытянутся в единую линию.

На втором этапе между одним из шариков и наэлектризованным диэлектриком поместим плоскую металлическую пластину. Она не изменит действующие на индикаторы силы. Шарики не поменяют свое положение.

Третий этап эксперимента связан с заземлением металлического листа. Сразу только как это произойдет, индикаторный шарик, расположенный между наэлектризованным диэлектриком и заземленным металлом, изменит свое положение, сменив направление на вертикальное. Он перестанет притягиваться к пластине и будет подвержен только гравитационным силам тяжести.

Этот опыт показывает, что заземленные металлические экраны блокируют распространение силовых линий электрического поля.

В этом случае индикаторами могут выступать:

    стальные опилки;

    замкнутый контур с протекающим по нему электрическим током;

    магнитная стрелка (пример с компасом).

Принцип распределения опилок из стали вдоль магнитных силовых линий является наиболее распространенным. Он же заложен в работу магнитной стрелки, которая, для уменьшения противодействия сил трения, закрепляется на остром наконечнике и этим получает дополнительную свободу для вращения.

Законы, описывающие взаимодействия полей с заряженными телами

Электрические поля

Прояснению картины процессов, происходящих внутри электрических полей, послужили опытные работы Кулона, осуществляемые с точечными зарядами, подвешенными на тонкой и длинной нити из кварца.

Когда к ним приближали заряженный шарик, то последний влиял на их положение, заставляя отклоняться на определенную величину. Это значение фиксировалось на лимбе шкалы специально сконструированного прибора.

Таким способом были выявлены силы взаимного действия между электрическими зарядами, называемые . Они описаны математическими формулами, позволяющими проводить предварительные расчеты проектируемых устройств.

Магнитные поля

Здесь хорошо работает на основе взаимодействия проводника с током, размещенного внутри магнитных силовых линий.

Для направления действия силы, осуществляющей воздействие на проводник с протекающим по нему током, применяют правило, использующее расположение пальцев на левой руке. Четыре соединенных вместе пальца необходимо расположить по направлению тока, а силовые линии магнитного поля должны входить в ладонь. Тогда оттопыренный большой палец укажет направление действия искомой силы.

Графические изображения полей

Для их обозначения на плоскости чертежа используются силовые линии.

Электрические поля

Для обозначения линий напряженности в этой ситуации используют потенциальное поле, когда имеются неподвижные заряды. Силовая линия выходит из положительного заряда и направляется в отрицательный.

Примером моделирования электрического поля может служить вариант размещения кристаллов хинина в масле. Более современным способом считается использование компьютерных программ графических проектировщиков.

Они позволяют создавать изображения эквипотенциальных поверхностей, судить о численном значении электрического поля, анализировать различные ситуации.

Магнитные поля

У них для наглядности отображения применяются линии, характерные для вихревого поля, когда они замкнуты единым контуром. Приведенный ранее пример со стальными опилками наглядно отображает это явление.

Силовые характеристики

Их принято выражать векторными величинами, имеющими:

    определённое направление действия;

    значение силы, рассчитываемое по соответствующей формуле.

Электрические поля

Вектор напряженности электрического поля у единичного заряда можно представить в форме трехмерного изображения.

Его величина:

    направлена от центра заряда;

    имеет размерность, зависящую от способа вычисления;

    определяется бесконтактным действием, то есть на расстоянии, как отношение действующей силы к заряду.

Магнитные поля

Напряженность, возникающую в катушке, можно рассмотреть на примере следующей картинки.


Силовые магнитные линии в ней от каждого витка с внешней стороны имеют одинаковое направление и складываются. Внутри межвиткового пространства они направлены встречно. За счет этого внутреннее поле ослаблено.

На величину напряженности влияют:

    сила проходящего по обмотке тока;

    количество и плотность намотки витков, определяющих осевую длину катушки.

Повышенные токи увеличивают магнитодвижущую силу. Кроме того, в двух катушках с равным числом витков, но разной плотностью их намотки, при прохождении одного и того же тока эта сила будет выше там, где витки расположены ближе.

Таким образом, электрическое и магнитное поля имеют совершенно определенные отличия, но являются взаимосвязанными составляющими единого общего - электромагнитного.

«Проводники в электрическом поле диэлектрики в электрическом поле» - Диэлектриками называются материалы, в которых нет свободных электрических зарядов. Поляризация диэлектриков. Диэлектрики. Применение диэлектриков. По принципу суперпозиции полей напряжённость внутри проводника равна нулю. Тема: «Проводники и диэлектрики в электрическом поле». Заряды площадок равны. Существует три вида диэлектриков: полярные, неполярные и сегнетоэлектрики.

«На поле Куликовом» - И мы стоим безмолвною стеною, Сжав кулаки. И лилась кровь как вода. А автора шедевра добрым словом – Нам непременно надо помянуть. А щеты московские… а мечи булатные… С утра туман накрыл нас тишиною, Замолкли даже кулики. Васнецов «После побоища». Вавилов «Поединок Пересвета с Челубеем». А пред картиною, уверен, не случайно, Душа не может не затрепетать!

«Заряд электрического поля» - В какой точке поля потенциал меньше? 1) 1 2) 2 3) 3 4) Во всех точках поля потенциал одинаков. Незаряженная капля жидкости разделилась на две части. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной. В электрическое поле напряженностью 200 Н/Кл внесли заряд 10-7 Кл. Отрицательный.

«Вихревое электрическое поле» - Вихревое электрическое поле. Вихревое поле. Индукционное электрическое поле является вихревым. Электрическое поле- вихревое поле. Причина возникновения электрического тока в неподвижном проводнике - электрическое поле. Электрическое поле.

«Поле» - Стебель прямой, ветвистый, высотой 20 - 50 см, покрытый, как и листья, мягкими волосками. Василёк. Среда обитания: Под землей на лугах, в полях и лесах. Бобр. Загадка: Через поля, через луга встала нарядная дуга? Ареал обитания: Северная Америка, Сев. и Центр. Прогулка по полю. Крот – мелкое млекопитающее с большим аппетитом.

«Куликовская битва в Москве» - Вспомните крутой спуск к высотному зданию у Яузских ворот. Что на Куликовом поле войска Дмитрия Донского сражались не со степными кочевниками. Отсюда - и ДОН, ДОНСКАЯ, т. е. НИЗОВАЯ область. Толковый Словарь В. Даля). Здесь же - улица Солянка, называвшаяся раньше также КУЛИЖКИ, т. е. Кулишки. О том, что не было в то время на Руси никаких завоевателей.