Система свертывания крови. Тканевые факторы свертывания

Одним из важнейших процессов, протекающих в нашем организме, является свертывание крови. Схема его будет описана ниже (также для наглядности предоставлены и изображения). И поскольку это сложный процесс, стоит рассмотреть его в подробностях.

Как всё происходит?

Итак, обозначенный процесс отвечает за остановку кровотечения, произошедшего из-за повреждения той или иной составляющей сосудистой системы организма.

Если говорить простым языком, то можно выделить три фазы. Первая - активация. После повреждения сосуда начинают происходить последовательные реакции, которые в итоге приводят к образованию так называемой протромбиназы. Это - сложный комплекс, состоящий из V и X Он образуется на фосфолипидной поверхности мембран тромбоцитов.

Вторая фаза - коагуляция. На этом этапе из фибриногена образуется фибрин - высокомолекулярный белок, который является основой тромбов, возникновение которых и подразумевает свертывание крови. Схема, предоставленная ниже, данную фазу наглядно демонстрирует.

И, наконец, третий этап. Он подразумевает образование фибринового сгустка, отличающегося плотной структурой. К слову, именно путём его промывания и высушивания удаётся получить «материал», который потом используется для приготовления стерильных плёнок и губок для остановки кровотечения, вызванного разрывом мелких сосудов при хирургических операциях.

О реакциях

Выше было кратко описано Схема, кстати, была разработана в далёком 1905 году учёным-коагулологом по имени Пауль Оскар Моравиц. И она не теряет своей актуальности до сих пор.

Но с 1905 года в области понимания свёртывания крови как сложного процесса изменилось многое. Благодаря прогрессу, конечно же. Учёные смогли открыть десятки новых реакций и белков, которые участвуют в данном процессе. И теперь более распространена каскадная схема свертывания крови. Благодаря ей восприятие и понимание такого сложного процесса становится немного более понятным.

Как можно видеть на предоставленном ниже изображении, происходящее буквально «разобрано на кирпичики». Принимается во внимание внутренняя и внешняя система - кровяная и тканевая. Для каждой характерна определённая деформация, наступающая вследствие повреждения. В кровяной системе вред наносится сосудистым стенкам, коллагену, протеазам (расщепляющие ферменты) и катехоламинам (молекулы-медиаторы). В тканевой же наблюдается повреждение клеток, вследствие которого из них выходит тромбопластин. Который является важнейшим стимулятором процесса свёртывания (иначе называемом коагуляцией). Он выходит непосредственно в кровь. Таков его «путь», но имеет он защитный характер. Ведь именно тромбопластин запускает процесс свёртывания. После его выхода в кровь начинается осуществление вышеперечисленных трёх фаз.

Время

Итак, что примерно представляет собой свертывание крови, схема понять помогла. Теперь хотелось бы немного поговорить о времени.

Весь процесс занимает как максимум 7 минут. Первая фаза длится от пяти до семи. В течение этого времени образуется протромбин. Данное вещество является сложной разновидностью белковой структуры, отвечающей за протекание процесса свёртывания и способность крови к сгущению. Которая используется нашим организмом в целях образования тромба. Он закупоривает повреждённое место, благодаря чему кровотечение останавливается. Всё это занимает 5-7 минут. Вторая и третья стадии происходят намного быстрее. За 2-5 секунд. Потому что эти фазы свертывания крови (схема предоставлена выше) затрагивают процессы, которые происходят повсеместно. А значит и у места повреждения непосредственно.

Протромбин, в свою очередь, образуется в печени. И на его синтез необходимо время. Насколько быстро выработается достаточное количество протромбина, зависит от количества витамина К, содержащегося в организме. Если его не хватает, кровотечение будет остановить сложно. И это является серьёзной проблемой. Поскольку нехватка витамина К указывает на нарушение синтеза протромбина. А это - недуг, который необходимо лечить.

Стабилизация синтеза

Что ж, общая схема свертывания крови понятна - теперь следует уделить немного внимания теме, касающейся того, что необходимо делать для восстановления необходимого количества витамина К в организме.

Для начала - правильно питаться. Самое большое количество витамина К содержится в зелёном чае - 959 мкг в 100 г! В три раза больше, кстати, чем в чёрном. Потому стоит его активно пить. Не стоит пренебрегать и овощами - шпинатом, белокочанной капустой, томатами, зелёным горошком, репчатым луком.

В мясе витамин К тоже содержится, но не во всём - только в телятине, говяжьей печени, баранине. Но меньше всего его находится в составе чеснока, изюма, молока, яблок и винограда.

Впрочем, если ситуация серьёзная, то одним разнообразием меню помочь будет сложно. Обычно врачи настоятельно рекомендуют комбинировать свой рацион с препаратами, ими прописанными. С лечением не стоит затягивать. Необходимо как можно скорее к нему приступить, чтобы нормализовать механизм свертывания крови. Схема лечения прописывается непосредственно врачом, и он также обязан предупредить, что может случиться, если рекомендациями пренебречь. А последствиями может стать дисфункция печени, тромбогеморрагический синдром, опухолевые заболевания и поражение стволовых клеток костного мозга.

Схема Шмидта

В конец XIX века жил известный физиолог и доктор медицинских наук. Звали его Александр Александрович Шмидт. Он прожил 63 года, и бóльшую часть времени посвятил исследованию проблем гематологии. Но особенно тщательно он изучал тему свёртывания крови. У него удалось установить ферментативный характер данного процесса, вследствие чего учёный предложил теоретическое ему объяснение. Которое наглядно изображает предоставленная ниже схема свертывания крови.

В первую очередь происходит сокращение повреждённого сосуда. Затем на месте дефекта образуется рыхлая, первичная тромбоцитарная пробка. Затем она укрепляется. Вследствие чего образуется красный тромб (иначе именуемый кровяным сгустком). После чего он частично или полностью растворяется.

В ходе данного процесса проявляются определённые факторы свертывания крови. Схема, в своём развёрнутом варианте, также их отображает. Обозначаются они арабскими цифрами. И всего их насчитывается 13. И о каждом необходимо рассказать.

Факторы

Полноценная схема свертывания крови невозможна без их перечисления. Что ж, начать стоит с первого.

Фактор I - это бесцветный белок фибриноген. Синтезируемый в печени, растворённый в плазе. Фактор II - протромбин, о котором уже говорилось выше. Его уникальная способность заключается в связывании ионов кальция. И именно впоследствии расщепления этого вещества формируется фермент свёртывания.

Фактор III - это липопротеин, тканевый тромбопластин. Его принято называть транспортом фосфолипидов, холестерина, а ещё триацилглицеридов.

Следующим фактором, IV, являются ионы Са2+. Те самые, которые связываются под воздействием бесцветного белка. Они задействованы во многих сложных процессах, помимо свёртывания, в секреции нейромедиаторов, например.

Фактор V - это глобулин. Который тоже образуется в печени. Он необходим для связывания кортикостероидов (гормональных веществ) и их транспортировки. Фактор VI определённое время существовал, но потом его было решено изъять из классификации. Поскольку учёные выяснили - его включает в себя фактор V.

Но классификацию менять не стали. Потому следом за V идёт фактор VII. Включающий в себя проконвертин, с участием которого образуется тканевая протромбиназа (первая фаза).

Фактор VIII - это белок, выраженной в одной цепочке. Известен, как антигемофильный глобулин А. Именно из-за его нехватки развивается такое редкое наследственное заболевание, как гемофилия. Фактор IX является «родственным» ранее упомянутому. Так как это антигемофильный глобулин В. Фактор X - непосредственно глобулин, синтезируемый в печени.

И, наконец, последние три пункта. Это фактор Розенталя, Хагемана и стабилизация фибрина. Они, в совокупности, влияют на образование межмолекулярных связей и нормальное функционирование такого процесса, как свертывание крови.

Схема Шмидта включает все эти факторы. И достаточно бегло с ними ознакомиться, чтобы понять, насколько описываемый процесс сложен и многозначен.

Противосвёртывающая система

Данное понятие также необходимо отметить внимание. Выше была описана система свертывания крови - схема также наглядно демонстрирует протекание этого процесса. Но так называемое «противосвёртывание» тоже имеет место быть.

Для начала хотелось бы отметить, что в ходе эволюции ученые решали две совершенно противоположные задачи. Они пытались выяснить - как организму удаётся предотвратить вытекание крови из повреждённых сосудов, и при этом сохранить её в жидком состоянии в целых? Что ж, решением второй задачи стало обнаружение противосвертывающей системы.

Она представляет собой определённый набор плазменных белков, которые способны снижать скорость химических реакций. То есть ингибировать.

И в данном процессе участвует антитромбин III. Его главная функция заключается в контролировании работы некоторых факторов, которые включает схема процесса свертывания крови. Важно уточнить: он не регулирует образование тромба, а устраняет ненужные ферменты, попавшие в кровоток из места, где тот формируется. Для чего это необходимо? Для предотвращения распространения свёртывания на участки кровеносного русла, которые оказались повреждёнными.

Препятствующий элемент

Рассказывая о том, что представляет собой система свертывания крови (схема которой представлена выше), нельзя не отметить вниманием такое вещество, как гепарин. Он представляет собой серосодержащий кислый гликозаминогликан (один из видов полисахаридов).

Это - прямой антикоагулянт. Вещество, способствующее угнетению активности свёртывающей системы. Именно гепарин препятствует процессу образования тромбов. Как это происходит? Гепарин просто снижает активность тромбина в крови. Однако это - естественное вещество. И оно несёт пользу. Если ввести данный антикоагулянт в организм, то можно поспособствовать активированию антитромбина III и липопротеинлипазы (ферменты, расщепляющие триглицериды - главные источники энергии для клеток).

Так вот, гепарин часто используется ля лечения тромботических состояний. Лишь одна его молекула может активировать большое количество антитромбина III. Соответственно, гепарин можно считать катализатором - поскольку действие в данном случае действительно схоже с эффектом, вызываемом ими.

Есть и другие вещества с таким же действием, содержащиеся в Взять, к примеру, α2- макроглобулин. Он способствует расщеплению тромба, оказывает влияние на процесс фибринолиза, выполняет функцию транспорта для 2-валентных ионов и некоторых белков. А ещё ингибирует вещества, участвующие в процессе свёртывания.

Наблюдаемые изменения

Есть ещё один нюанс, который не демонстрирует традиционная схема свертывания крови. Физиология нашего организма такова, что многие процессы подразумевают не только химические изменения. Но ещё и физические. Если бы мы могли наблюдать за свёртыванием невооруженным взглядом, то увидели бы, что форма тромбоцитов в его процессе меняется. Они превращаются в округлые клетки с характерными шиповидными отростками, которые необходимы для интенсивного осуществления агрегации - объединения элементов в единое целое.

Но это ещё не всё. Из тромбоцитов в процессе свёртывания выделяются различные вещества - катехоламины, серотонин и т.д. По причине этого просвет сосудов, которые оказались повреждёнными, сужается. За счёт чего происходит функциональная ишемия. Кровоснабжение в повреждённом месте снижается. И, соответственно, излияние постепенно тоже сводится к минимуму. Это даёт тромбоцитам возможность перекрыть повреждённые места. Они, за счёт своих шиповидных отростков, будто бы «крепятся» к краям коллагеновых волокон, которые находятся у краёв раны. На этом заканчивается первая, самая долгая фаза активации. Завершается она образованием тромбина. После чего следует ещё несколько секунд фазы коагуляции и ретракции. А последний этап - восстановление нормального кровообращения. И оно имеет большое значение. Поскольку полноценное заживление раны невозможно без хорошего кровоснабжения.

Полезно знать

Что ж, примерно так на словах и выглядит упрощенная схема свертывания крови. Впрочем, есть ещё несколько нюансов, которые хотелось бы отметить вниманием.

Гемофилия. О ней уже упоминалось выше. Это очень опасное заболевание. Любое кровоизлияние человеком, им страдающим, переживается тяжело. Заболевание наследственное, развивается из-за дефектов белков, принимающих участие в процессе свёртывание. Обнаружить его можно достаточно просто - при малейшем порезе человек потеряет много крови. И потратит немало времени на её остановку. А при особо тяжелых формах кровоизлияние может начаться без причин. Люди, страдающие гемофилией, могут рано подвергнуться инвалидизации. Поскольку частые кровоизлияния в мышечные ткани (обычные гематомы) и в суставы - это не редкость. Лечится ли это? С трудом. Человек должен в прямом смысле слова относиться к своему телу, как к хрупкому сосуду, и всегда быть аккуратным. Если случается кровотечение - нужно срочно ввести донорскую свежую кровь, в которой содержится фактор XVIII.

Обычно данным заболеванием страдают мужчины. А женщины выступают в роли носительниц гена гемофилии. Интересно, что британская королева Виктория была таковой. Одному из её сыновей заболевание передалось. Насчёт остальных двух неизвестно. С тех пор гемофилию, кстати, нередко называют королевской болезнью.

Но бывают и обратные случаи. Имеется в виду Если она наблюдается, то человеку тоже нужно быть не менее аккуратным. Повышенная свертываемость говорит о высоком риске образования внутрисосудистых тромбов. Которые закупоривают целые сосуды. Нередко последствием может стать тромбофлебит, сопровождающийся воспалением венозных стенок. Но этот дефект лечится проще. Часто, кстати, он является приобретённым.

Удивительно, сколько всего происходит в организме человека, когда тот элементарно порезался листком бумаги. Можно ещё долго рассказывать об особенностях крови, её свёртывании и процессах, которые его сопровождают. Но вся наиболее интересная информация, как и наглядно демонстрирующие её схемы, предоставлена выше. С остальным, при желании, можно ознакомиться в индивидуальном порядке.

  • Введение

    Современные представления о системе регуляции агрегантного состояния крови позволяют выделить основные механизмы её деятельности:

    • Механизмы гемостаза (их несколько) обеспечивают остановку кровотечения.
    • Механизмы антисвёртывания поддерживают жидкое состояние крови.
    • Механизмы фибринолиза обеспечивают растворение тромба (кровяного сгустка) и восстановление просвета сосуда (реканализацию).

    В обычном состоянии слегка преобладают противосвёртывающие механизмы, однако при необходимости предотвратить кровопотерю физиологический баланс быстро смещается в сторону прокоагулянтов. Если этого не происходит, развивается повышенная кровоточивость (геморрагические диатезы), преобладание прокоагулянтной активности крови чревато развитием тромбозов и эмболий. Выдающийся немецкий патолог Рудольф Вирхов выделил три группы причин, ведущих к развитию тромбоза (классическая триада Вирхова):

    • Повреждение сосудистой стенки.
    • Изменение состава крови.
    • Замедление кровотока (стаз).

    В структуре артериальных тромбозов преобладает первая причина (атеросклероз); замедление кровотока и преобладание прокоагулянтных факторов – основные причины венозных тромбозов.

    Различают два механизма гемостаза:

    • Сосудисто-тромбоцитарный (микроциркуляторный, первичный).
    • Коагуляционный (вторичный, свёртывание крови).

    Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах (в сосудах микроциркуляторного русла), где имеются низкое кровяное давление и малый просвет сосудов (до 100 мкм). В них остановка кровотечения может произойти за счёт:

    • Сокращения стенок сосудов.
    • Образования тромбоцитарной пробки.
    • Сочетания того и другого.

    Коагуляционный гемостаз обеспечивает остановку кровотечения в более крупных сосудах (артериях и венах). В них остановка кровотечения осуществляется за счёт свёртывания крови (гемокоагуляции).

    Полноценная гемостатическая функция возможна только при условии тесного взаимодействия сосудисто-тромбоцитарного и гемокоагуляционного механизмов гемостаза. Тромбоцитарные факторы принимают активное участие в коагуляционном гемостазе, обеспечивают конечный этап формирования полноценной гемостатической пробки – ретракцию кровяного сгустка. В то же время плазменные факторы непосредственно влияют на агрегацию тромбоцитов. При ранениях как мелких, так и крупных сосудов происходит образование тромбоцитарной пробки с последующим свёртыванием крови, организацией фибринового сгустка, а затем – восстановление просвета сосудов (реканализация путём фибринолиза).

    Реакция на повреждение сосуда зависит от разнообразных процессов взаимодействия между сосудистой стенкой, циркулирующими тромбоцитами, факторами свёртывания крови, их ингибиторами и фибринолитической системой. Гемостатический процесс модифицируется посредством положительной и отрицательной обратной связи, которая поддерживает стимуляцию констрикции сосудистой стенки и образование комплексов тромбоциты-фибрин, а также растворение фибрина и релаксацию сосудов, что позволяет вернуться к нормальному состоянию.

    Для того чтобы кровоток в обычном состоянии не нарушался, а при необходимости наступало эффективное свёртывание крови, необходимо поддержание равновесия между факторами плазмы, тромбоцитов и тканей, способствующими свёртыванию и тормозящими его. Если это равновесие нарушается, возникает либо кровотечение (геморрагические диатезы), либо повышенное тромбообразование (тромбозы).

  • Сосудисто-тромбоцитарный гемостаз

    У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 минуты (так называемое время кровотечения). Этот первичный гемостаз почти целиком обусловлен сужением сосудов и их механической закупоркой агрегатами тромбоцитов – «белым тромбом» (рис. 1).

    Рисунок 1. Сосудисто-тромбоцитарный гемостаз. 1 – повреждение эндотелия; 2 – адгезия тромбоцитов; 3 – активация тромбоцитов, выделение биологически активных веществ из их гранул и образование медиаторов – производных арахидоновой кислоты; 4 – изменение формы тромбоцитов; 5 – необратимая агрегация тромбоцитов с последующим формированием тромба. ФВ – фактор Виллебранда, ТФР – тромбоцитарный фактор роста, TXA 2 – тромбоксан А 2 , АДФ – аденозиндифосфат, ФАТ – фактор активации тромбоцитов. Пояснения в тексте .

    Тромбоциты (кровяные пластинки, нормальное содержание в крови 170-400х10 9 /л) представляют собой плоские безъядерные клетки неправильной округлой формы диаметром 1-4 мкм. Кровяные пластинки образуются в красном костном мозге путём отщепления участков цитоплазмы от гигантских клеток – мегакариоцитов; из каждой такой клетки может возникнуть до 1000 тромбоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней и затем разрушаются в селезёнке.

    В крови тромбоциты пребывают в неактивированном состоянии. Их активация наступает в результате контакта с активирующей поверхностью и действия некоторых факторов свёртывания. Активированные тромбоциты выделяют ряд веществ, необходимых для гемостаза.

    • Клиническое значение нарушений в сосудисто-тромбоцитарном звене гемостаза

      При уменьшении количества тромбоцитов (тромбоцитопении) или нарушении их структуры (тромбоцитопатии) возможно развитие геморрагического синдрома с петехиально-пятнистым типом кровоточивости. Тромбоцитоз (увеличение содержания тромбоцитов) предрасполагает к гиперкоагуляции и тромбозам. К методам оценки состояния сосудисто-тромбоцитарного гемостаза относят определение резистентности (ломкости) капилляров (манжеточная проба Румпель-Лееде-Кончаловского, симптомы жгута и щипка), время кровотечения, подсчёт числа тромбоцитов, оценку ретракции сгустка крови, определение ретенции (адгезивности) тромбоцитов, исследование агрегации тромбоцитов.

      К агрегации тромбоцитов даже в отсутствии внешних повреждений могут приводить дефекты эндотелиальной оболочки сосудов. С целью предупреждения тромбозов назначают препараты, подавляющие агрегацию тромбоцитов - антиагреганты. Ацетилсалициловая кислота (аспирин) селективно и необратимо ацетилирует фермент циклооксигеназу (ЦОГ), катализирующую первый этап биосинтеза простаноидов из арахидоновой кислоты. В невысоких дозах препарат влияет преимущественно на изоформу ЦОГ-1. В результате в циркулирующих в крови тромбоцитах прекращается образование тромбоксана A 2 , обладающего проагрегантным и сосудосуживающим действием. Метаболиты производных тиенопиридина (клопидогрел, тиклопидин) необратимо модифицируют рецепторы 2PY 12 на мембране тромбоцитов, в результате блокируется связь АДФ с его рецептором на мембране тромбоцита, что приводит к угнетению агрегации тромбоцитов. Дипиридамол угнетает фермент фосфодиэстеразу в тромбоцитах, что приводит к накоплению в тромбоцитах цАМФ, обладающего антиагрегантным действием. Блокаторы гликопротеинов IIb/IIIa тромбоцитов (абциксимаб, тирофибан и эптифибатид) воздействуют на конечную стадию агрегации, блокируя участок взаимодействия гликопротеинов IIb/IIIa на поверхности тромбоцитов с фибриногеном и другими адгезивными молекулами.

      В настоящее время проходят клинические испытания новых антиагрегантов (тикагрелор, прасугрел).

      В качестве местного кровоостанавливающего средства используется губка гемостатическая коллагеновая, усиливающая адгезию и активацию тромбоцитов, а также запускающая коагуляционный гемостаз по внутреннему пути.

  • Коагуляционный гемостаз
    • Общие положения

      После того как образуется тромбоцитарный сгусток, степень сужения поверхностных сосудов уменьшается, что могло бы привести к вымыванию сгустка и возобновлению кровотечения. Однако к этому времени уже набирают достаточную силу процессы коагуляции фибрина в ходе вторичного гемостаза, обеспечивающего плотную закупорку повреждённых сосудов тромбом («красным тромбом»), содержащим не только тромбоциты, но и другие клетки крови, в частности эритроциты (рис. 9).

      Рисунок 9. Красный тромб – эритроциты в трёхмерной фибриновой сети. (источник – сайт www.britannica.com).

      Постоянная гемостатическая пробка формируется при образовании тромбина посредством активации свёртывания крови. Тромбин играет важную роль в возникновении, росте и локализации гемостатической пробки. Он вызывает необратимую агрегацию тромбоцитов (неразрывная связь коагуляционного и сосудисто-тромбоцитарного звеньев гемостаза) (рис. 8) и отложение фибрина на тромбоцитарных агрегатах, образующихся в месте сосудистой травмы. Фибрино-тромбоцитарная сеточка является структурным барьером, предотвращающим дальнейшее вытекание крови из сосуда, и инициирует процесс репарации ткани.

      Свёртывающая система крови – это фактически несколько взаимосвязанных реакции, протекающих при участии протеолитических ферментов. На каждой стадии данного биологического процесса профермент (неактивная форма фермента, предшественник, зимоген) превращается в соответствующую сериновую протеазу. Сериновые протеазы гидролизуют пептидные связи в активном центре, основу которого составляет аминокислота серин. Тринадцать таких белков (факторы свёртывания крови) составляют систему свёртывания (таблица 1; их принято обозначать римскими цифрами (например, ФVII – фактор VII), активированную форму обозначают прибавлением индекса «а» (ФVIIа – активированный фактор VIII). Из них семь активируются до сериновых протеаз (факторы XII, XI, IX, X, II, VII и прекалликреин), три являются кофакторами этих реакций (факторы V, VIII и высокомолекулярный кининоген ВМК), один – кофактор/рецептор (тканевой фактор, фактор III), ещё один – трасглутаминаза (фактор XIII) и, наконец, фибриноген (фактор I) является субстратом для образования фибрина, конечного продукта реакций свёртывания крови (таблица 1).

      Для пострибосомального карбоксилирования терминальных остатков глутаминовой кислоты факторов свёртывания II, VII, IX, X (витамин К-зависимые факторы), а также двух ингибиторов свёртывания (протеинов C (си) и S) необходим витамин К. В отсутствии витамина К (или на фоне приёма непрямых антикоагулянтов, например, варфарина) печень содержит лишь биологически неактивные белковые предшественники перечисленных факторов свёртывания. Витамин К – необходимый кофактор микросомальной ферментной системы, которая активирует эти предшественники, превращая их множественные N-концевые остатки глутаминовой кислоты в остатки γ -карбоксиглутаминовой кислоты. Появление последних в молекуле белка придёт ему способность связывать ионы кальция и взаимодействовать с мембранными фосфолипидами, что необходимо для активации указанных факторов. Активная форма витамина К – восстановленный гидрохинон, который в присутствии O 2 , CO 2 и микросомальной карбоксилазы превращается в 2,3-эпоксид с одновременным γ-карбоксилированием белков. Для продолжения реакций γ –карбоксилирования и синтеза биологически-активных белков витамин К опять должен восстановиться в гидрохинон. Под действием витамин-К-эпоксидредуктазы (которую ингибируют терапевтические дозы варфарина) из 2,3-эпоксида вновь образуется гидрохиноновая форма витамина К (рис. 13).

      Для осуществления многих реакций коагуляционного гемостаза необходимы ионы кальция (Ca ++ , фактор свёртывания IV, рис. 10). Для предотвращения преждевременного свёртывания крови in vitro при подготовке к выполнению ряда коагуляционных тестов к ней добавляют вещества, связывающие кальций (оксалаты натрия, калия или аммония, цитрат натрия, хелатообразующее соединение этилендиаминтетраацетат (ЭДТА)).

      Таблица 1. Факторы свёртывания крови (а – активная форма) .

      Фактор Название Наиболее важное место образования T ½ (период полусуществования) Средняя концентрация в плазме, мкмоль/мл Свойства и функции Синдром недостаточности
      Название Причины
      I Фибриноген Печень 4-5 дней 8,8 Растворимый белок, предшественник фибриногена Афибриногенемия, недостаточность фибриногена Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления, поражение печёночной паренхимы.
      II Протромбин 3 дня 1,4 α 1 -глобулин, профермент тромбина (протеаза) Гипопротромбинемия Наследование по аутосомно-рецессивному типу (хромосома 11); поражения печени, недостаточность витамина К, коагулопатия потребления.
      III Тканевой тромбопластин (тканевой фактор) Клетки тканей Фосфолипропротеин; активен во внешней системе свёртывания
      IV Кальций (Са ++) 2500 Необходим для активации большинства факторов свёртывания
      V Проакцелерин, АК-глобулин Печень 12-15 ч. 0,03 Растворимый b-глобулин, связывается с мембраной тромбоцитов; активируется фактором IIa и Са ++ ; Va служит компонентом активатора протромбина Парагемофилия, гипопроакцелеринемия Наследование по аутосомно-рецессивному типу (хромосома 1); поражения печени.
      VI Изъят из классификации (активный фактор V)
      VII Проконвертин Печень (витамин К-зависимый синтез) 4-7 ч. 0,03 α 1 -глобулин, профермент (протеаза); фактор VIIа вместе с фактором III и Са ++ активирует фактор X во внешней системе Гипопроконвертинемия Наследование по аутосомно-рецессивному типу (хромосома 13); недостаточность витамина К.
      VIII Антигемофильный глобулин Различные ткани, в т.ч. эндотелий синусоид печени 8-10 ч. b 2 -глобулин, образует комплекс с фактором Виллебранда; активируется фактором IIa и Са ++ ; фактор VIIIa служит кофактором в превращении фактора X в фактор Xa Гемофилия А (классическая гемофилия); синдром Виллебранда Наследование по рецессивному типу, сцепление с X-хромосомой (половой); Наследование обычно по аутосомно-доминантному типу.
      IX Фактор Кристмаса 24 часа 0,09 α 1 -глобулин, контакт-чувствительный профермент (протеаза); фактор IXа вместе с фактором пластинок 3, фактором VIIIa и Са ++ активирует фактор X dj внутренней системе Гемофилия B Наследование по рецессивному типу, сцепленное с X-хромосомой (половой).
      X Фактор Стюарта-Прауэра Печень Печень (витамин К-зависимый синтез) 2 дня 0,2 α 1 -глобулин, профермент (протеаза); фактор Xa служит компонентом активатора протромбина Недостаточность фактора X Наследование по аутосомноу-рецессивному типу (хромосома 13)
      XI Плазменный предшественник трмбопластина (ППТ) Печень 2-3 дня 0,03 γ-глобулин, контакт-чувствительный профермент (протеаза); фактор XIa вместе с Са ++ активирует фактор IX Недостаточность ППТ Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления.
      XII Фактор Хагемана Печень 1 день 0,45 b-глобулин, контакт-чувствительный профермент (протеаза) (изменяет форму при контакте с поверхностями); активируется калликреином, коллагеном и др.; активирует ПК, ВМК, фактор XI Синдром Хагемана (обычно не проявляется клинически) Наследование обычно по аутосомно-рецессивному типу (хромосома 5).
      XIII Фибрин-стабилизирующий фактор Печень, тромбоциты 8 дней 0,1 b-глобулин, профермент (трансамидаза); фактор XIIIa вызывает переплетение нитей фибрина Недостаточность фактора XIII Наследование по аутосомно-рецессивному типу (хромосомы 6, 1); коагулопатия потребления.
      Прекалликреин (ПК), фактор Флетчера Печень 0,34 b-глобулин, профермента (протеаза); активируется фактором XIIa; калликреин способствует активации факторов XII и XI Наследование (хромосома 4)
      Высокомолекулярный кининоген (ВМК) (фактор Фитцжеральда, фактор Вильямса, фактор Фложека) Печень 0,5 α 1 -глобулин; способствует контактной активации факторов XII и XI Обычно клинически не проявляется Наследование (хромосома 3)

      Основы современной ферментной теории свёртывания крови были заложены в конце XIX – начале XX столетия профессором Тартуского (Дерптского) университета Александром-Адольфом Шмидтом (1877 г.) и уроженцем Санкт-Петербурга Паулом Моравитцем (1904 г.), а также в работе С. Мурашева о специфичности действия фибрин-ферментов (1904 г.). Основные этапы свёртывания крови, приведённые в схеме Моравитца, верны и поныне. Вне организма кровь свёртывается за несколько минут. Под действием «активатора протромбина» (тромбокиназы), белок плазмы протромбин превращается в тромбин. Последний вызывает ращепление растворённого в плазме фибриногена с образованием фибрина, волокна которого образуют основу тромба. В результате этого кровь превращается из жидкости в студенистую массу. С течением времени открывались всё новые и новые факторы свёртывания и в 1964 году двумя независимыми группами учёных (Davie EW, Ratnoff OD; Macfarlane RG) была предложена ставшая классической модель коагуляционного каскада (водопада), представленная во всех современных учебниках и руководствах. Эта теория подробно изложена ниже. Использование подобного рода схемы свёртывания крови оказалось удобным для правильного толкования комплекса лабораторных тестов (таких как АЧТВ, ПВ), применяющихся при диагностике различных геморрагических диатезов коагуляционного генеза (например, гемофилии А и B). Однако модель каскада не лишена недостатков, что послужило поводом для разработки альтернативной теории (Hoffman M, Monroe DM) – клеточной модели свёртывания крови (см. соответствующий раздел).

    • Модель коагуляционного каскада (водопада)

      Механизмы инициации свёртывания крови подразделяют на внешние и внутренние. Такое деление искусственно, поскольку оно не имеет места in vivo, но данный подход облегчает интерпретацию лабораторных тестов in vitro.

      Большинство факторов свёртывания циркулируют в крови в неактивной форме. Появление стимулятора коагуляции (триггера) приводит к запуску каскада реакций, завершающихся образованием фибрина (рис. 10). Триггер может быть эндогенным (внутри сосуда) или экзогенным (поступающим из тканей). Внутренний путь активации свёртывания крови определяется как коагуляция, инициируемая компонентами, полностью находящимися в пределах сосудистой системы. Когда процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, говорят о внешней системе свёртывания крови. В результате запуска реакций системы гемостаза независимо от источника активации образуется фактор Xa, обеспечивающий превращение протромбина в тромбин, а последний катализирует образование фибрина из фибриногена. Таким образом, и внешний и внутренний пути замыкаются на единый – общий путь свёртывания крови.

      • Внутренний путь активации свёртывания крови

        Компонентами внутреннего пути являются факторы XII, XI, IX, XIII, кофакторы – высокомолекулярный кининоген (ВМК) и прекалликреин (ПК), а также их ингибиторы.

        Внутренний путь (рис. 10 п. 2) запускается при повреждении эндотелия, когда обнажается отрицательно заряженная поверхность (например, коллаген) в пределах сосудистой стенки. Контактируя с такой поверхностью, активируется ФXII (образуется ФXIIa). Фактор XIIa активирует ФXI и превращает прекалликреин (ПК) в калликреин, который активирует фактор XII (петля положительной обратной связи). Механизм взаимной активации ФXII и ПК отличается большей быстротой по сравнению с механизмом самоактивации ФXII, что обеспечивает многократное усиление системы активации. Фактор XI и ПК связываются с активирующей поверхностью посредством высокомолекулярного кининогена (ВМК). Без ВМК активации обоих проферментов не происходит. Связанный ВМК может расщепляться калликреином (К) или связанным с поверхностью ФXIIa и инициировать взаимную активацию систем ПК-ФXII.

        Фактор XIa активирует фактор IX. Фактор IX может также активироваться под действием комплекса ФVIIa/ФIII (перекрёст с каскадом внешнего пути), причём считается, что in vivo это доминирующий механизм. Активированный ФIXa требует наличия кальция и кофактора (ФVIII), для прикрепления к тромбоцитарному фосфолипиду (тромбоцитарному фактору 3 – см. раздел сосудисто-тромбоцитарный гемостаз) и превращения фактора X в фактор Xa (переход с внутреннего на общий путь). Фактор VIII действует в качестве мощного ускорителя завершающей ферментативной реакции.

        Фактор VIII, который также называют антигемофильным фактором, кодируется большим геном, расположенным на конце X-хромосомы. Он активируется под действием тромбина (основной активатор), а также факторов IXa и Xa. ФVIII циркулирует в крови, будучи связанным с фактором фон Виллебранда (ФВ) – большим гликопротеином, продуцируемым эндотелиальными клетками и мегакариоцитами (см. также раздел сосудисто-тромбоцитарный гемостаз). ФВ служит внутрисосудистым белком-носителем для ФVIII. Связывание ФВ с ФVIII стабилизирует молекулу ФVIII, увеличивает её период полусуществования внутри сосуда и способствует её транспорту к месту повреждения. Однако чтобы активированный фактор VIII мог проявить свою кофакторную активность, он должен отсоединиться от ФВ. Воздействие тромбина на комплекс ФVIII/ФВ приводит к отделению ФVIII от несущего протеина и расщеплению на тяжёлую и лёгкую цепи ФVIII, которые важны для коагулянтной активность ФVIII.

      • Общий путь свёртывания крови (образование тромбина и фибрина)

        Внешний и внутренний пути свёртывания крови замыкаются на активации ФX, с образования ФXa начинается общий путь (рис. 10 п. 3). Фактор Xa активирует ФV. Комплекс факторов Xa, Va, IV (Ca 2+) на фосфолипидной матрице (главным образом это тромбоцитарный фактор 3 – см. сосудисто-тромбоцитарный гемостаз) является протромбиназой, которая активирует протромбин (превращение ФII в ФIIa).

        Тромбин (ФIIa) представляет собой пептидазу, особенно эффективно расщепляющую аргиниловые связи. Под действием тромбина наступает частичный протеолиз молекулы фибриногена. Однако функции тромбина не ограничиваются влиянием на фибрин и фибриноген. Он стимулирует агрегацию тромбоцитов, активирует факторы V, VII, XI и XIII (положительная обратная связь), а также разрушает факторы V, VIII и XI (петля отрицательная обратной связи), активирует фибринолитическую систему, стимулирует эндотелиальные клетки и лейкоциты. Он также вызывает миграцию лейкоцитов и регулирует тонус сосудов. Наконец, стимулируя рост клеток, способствует репарации тканей.

        Тромбин вызывает гидролиз фибриногена до фибрина. Фибриноген (фактор I) представляет собой сложный гликопротеин, состоящий из трёх пар неидентичных полипептидных цепей. Тромбин прежде всего расщепляет аргинин-глициновые связи фибриногена с образованием двух пептидов (фибринопептид А и фибринопептид B) и мономеров фибрина. Эти мономеры образуют полимер, соединяясь бок в бок (фибрин I) и удерживаясь рядом водородными связями (растворимые фибрин-мономерные комплексы – РФМК). Последующий гидролиз этих комплексов при действии тромбина приводит к выделению фибринопептида B. Кроме того, тромбин активирует ФXIII, который в присутствии ионов кальция связывает боковые цепи полимеров (лизин с глутаминовыми остатками) изопептидными ковалентными связями. Между мономерами возникают многочисленные перекрёстные связи, создающие сеть взаимодействующих фибриновых волокон (фибрин II), весьма прочных и способных удерживать тромбоцитарную массу на месте травмы.

        Однако на этой стадии трёхмерная сеть волокон фибрина, которая удерживает в больших количествах клетки крови и кровяные пластинки, всё ещё относительно рыхлая. Свою окончательную форму она принимает после ретракции: через несколько часов волокна фибрина сжимаются и из него как бы выдавливается жидкость – сыворотка, т.е. лишённая фибриногена плазма. На месте сгустка остаётся плотный красный тромб, состоящий из сети волокон фибрина с захваченными ею клетками крови. В этом процессе участвуют тромбоциты. В них содержится тромбостенин – белок, сходный с актомиозином, способный сокращаться за счёт энергии АТФ. Благодаря ретракции сгусток становится более плотным и стягивает края раны, что облегчает её закрытие клетками соединительной ткани.

    • Регуляция системы свертывания крови

      Активация свёртывания крови in vivo модулируется рядом регуляторных механизмов, которые ограничивают реакции местом повреждения и предотвращают возникновение массивного внутрисосудистого тромбоза. К регулирующим факторам относят: кровоток и гемодилюцию, клиренс, осуществляемый печенью и ретикулоэндотелиальной системой (РЭС), протеолитическое действие тромбина (механизм отрицательной обратной связи), ингибиторы сериновых протеаз.

      При быстром кровотоке происходит разбавление активных сериновых протеаз и транспорт их в печень для утилизации. Кроме того, диспергируются и отсоединяются периферические тромбоциты от тромбоцитарных агрегатов, что ограничивает размер растущей гемостатической пробки.

      Растворимые активные сериновые протеазы инактивируются и удаляются из кровообращения гепатоцитами и ретикулоэндотелиальными клетками печени (купферовскими клетками) и других органов.

      Тромбин в качестве фактора, ограничивающего свёртывание, разрушает факторы XI, V, VIII, а также инициирует активацию фибринолитической системы посредством белка C, что приводит к растворению фибрина, в том числе за счёт стимуляции лейкоцитов (клеточный фибринолиз – см. раздел « фибринолиз »).

      • Ингибиторы сериновых протеаз

        Процесс свёртывания крови строго контролируется присутствующими в плазме белками (ингибиторами), которые ограничивают выраженность протеолитических реакций и обеспечивают защиту от тромбообразования (рис. 11). Главными ингибиторами факторов свёртывания крови являются антитромбин III (АТ III, гепариновый кофактор I), гепариновый кофактор II (ГК II), протеин «си» (PC) и протеин «эс» (PS), ингибитор пути тканевого фактора (ИПТФ), протеаза нексин-1 (ПН-1), C1-ингибитор, α 1 -антитрипсин (α 1 -АТ) и α 2 -макроглобулин (α 2 -М). Большинство этих ингибиторов, за исключением ИПТФ и α 2 -М, относятся к серпинам (СЕРиновых Протеаз ИНгибиторы).

        Антитромбин III (АТ III) является серпином и основным ингибитором тромбина, ФXa и ФIXa, он также инактивирует ФXIa и ФXIIa (рис. 11). Антитромбин III нейтрализует тромбин и другие сериновые протеазы посредством ковалентного связывания. Скорость нейтрализации сериновых протеаз антитромбином III в отсутствии гепарина (антикоагулянта) невелика и существенно увеличивается в его присутствии (в 1000 – 100000 раз). Гепарин представляет собой смесь полисульфатированных эфиров гликозаминогликанов; он синтезируется тучными клетками и гранулоцитами, его особенно много в печени, лёгких, сердце и мышцах, а также в тучных клетках и базофилах. В терапевтических целях вводят синтетический гепарин (нефракционированный гепарин, низкомолекулярные гепарины). Гепарин образует с АТ III комплекс, называемый антитромбином II (АТ II), повышая тем самым эффективность АТ III и подавляя образование и действие тромбина. Кроме того, гепарин служит активатором фибринолиза и поэтому способствует растворению сгустков крови. Значение АТ III, как основного модулятора гемостаза подтверждается наличием тенденции к тромбообразованию у лиц с врождённым или приобретённым дефицитом АТ III.

        Протеинс си (PC) – витамин К-зависимый белок, синтезируемый гепатоцитами. Циркулирует в крови в неактивной форме. Активируется небольшим количеством тромбина. Эта реакция значительно ускоряется тромбомодулином (ТМ) – поверхностным белком эндотелиальных клеток, который связывается с тромбином. Тромбин в комплексе с тромбомодулином становится антикоагулянтным белком, способным активировать сериновую протеазу – PC (петля отрицательной обратной связи). Активированный PC в присутствии своего кофактора – протеина S (PS) расщепляет и инактивирует ФVa и ФVIIIa (рис. 11). PC и PS являются важными модуляторами активации свёртывания крови и их врождённый дефицит связан со склонностью к тяжёлым тромботическим нарушениям. Клиническое значение PC доказывает повышенное тромбообразование (тромбофилия) у лиц с врождённой патологией ФV (Лейденская мутация – замена гуанина 1691 аденином, что приводит к замещению аргинина глутамином в позиции 506 аминокислотной последовательности белка). Такая патология ФV устраняет сайт, по которому происходит расщепление активированным протеином C, что мешает инактивации фактора V и способствует возникновению тромбоза.

        Активированный PC посредством механизма обратной связи подавляет продукцию эндотелиальными клетками ингибитора активатора плазминогена-1 (ИАП-1), оставляя без контроля тканевой активатор плазминогена (ТАП – см. разле фибринолиз). Это косвенно стимулирует фибринолитическую систему и усиливает антикоагулянтную активность активированного PC.

        α 1 -антитрипсин (α 1 -АТ) нейтрализует ФXIa и активированный PC.

        С1-ингибитор (С1-И) также является серпином и главным ингибитором сериновых ферментов контактной системы. Он нейтрализует 95% ФXIIa и более 50% всего калликреина, образующегося в крови. При дефиците С1-И возникает ангионевротический отёк. ФXIa инактивируется в основном α1-антитрипсином и АТ III.

        Гепариновый кофактор II (ГК II) – серпин, ингибирующий только тромбин в присутствии гепарина или дерматан-сульфата. ГК II находится преимущественно во внесосудистом пространстве, где локализуется дерматан-сульфат, и именно здесь может играть решающую роль в ингибировании тромбина. Тромбин способен стимулировать пролиферацию фибробластов и других клеток, хемотаксис моноцитов, облегчать адгезию нейтрофилов к эндотелиальным клеткам, ограничивать повреждение нервных клеток. Способность ГК II блокировать эту деятельность тромбина играет определённую роль в регулировании процессов заживления ран, воспаления или развития нервной ткани.

        Протеаза нексин-1 (ПН-1) – серпин, ещё один вторичный ингибитор тромбина, предотвращающий его связывание с клеточной поверхностью.

        Ингибитор пути тканевого фактора (ИПТФ) представляет собой куниновый ингибитор свёртывания (кунины гомологичны ингибитору панкреатического трипсина – апротинину). Синтезируется главным образом эндотелиальными клетками и в меньшей степени – мононуклеарами и гепатоцитами. ИПТФ связывается с ФXa, инактивируя его, а затем комплекс ИПТФ-ФXa инактивирует комплекс ТФ-ФVIIa (рис. 11). Нефракционированный гепарин, низкомолекулярные гепарины стимулируют выделение ИПТФ и усиливают его антикоагулянтную активность.

        Рисунок 11. Действие ингибиторов коагуляции. ФЛ – фосфолипиды. Пояснения в тексте .

    • Фибринолиз

      Конечная стадия в репаративном процессе после повреждения кровеносного сосуда происходит за счёт активации фибринолитической системы (фибринолиза), что приводит к растворению фибриновой пробки и началу восстановления сосудистой стенки.

      Растворение кровяного сгустка – такой же сложный процесс, как и его образование. В настоящее время считается, что даже в отсутствие повреждения сосудов постоянно происходит превращение небольшого количества фибриногена в фибрин. Это превращение уравновешивается непрерывно протекающим фибринолизом. Лишь в том случае, когда свёртывающая система дополнительно стимулируется в результате повреждения ткани, выработка фибрина в области повреждения начинает преобладать и наступает местное свёртывание.

      Существуют два главных компонента фибринолиза: фибринолитическая активность плазмы и клеточный фибринолиз.

      • Фибринолитическая система плазмы

        Фибринолитическая система плазмы (рис. 12) состоит из плазминогена (профермент), плазмина (фермент), активаторов плазминогена и соответствующих ингибиторов. Активация фибринолитической системы приводит к образованию плазмина – мощного протеолитического фермента, обладающего разнообразным действием in vivo.

        Предшественник плазмина (фибринолизина) – плазминоген (профибринолизин) представляет собой гликопротеин, продуцируемый печенью, эозинофилами и почками. Активация плазмина обеспечивается механизмами, аналогичными внешней и внутренней свёртывающим системам. Плазмин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину. Плазмин отщепляет от фибрина путём гидролиза растворимые пептиды, которые тормозят действие тромбина (рис. 11) и, таким образом, препятствуют дополнительному образованию фибрина. Плазмин расщепляет также другие факторы свёртывания: фибриноген, факторы V, VII, VIII, IX, X, XI и XII, фактор Виллебранда и тромбоцитарые гликопротеины. Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свёртываемость крови. Он также активирует компоненты каскада комплемента (C1, C3a, C3d, C5).

        Превращение плазминогена в плазмин катализируется активаторами плазминогена и строго регулируется различными ингибиторами. Последние инактивируют как плазмин, так и активаторы плазминогена.

        Активаторы плазминогена образуются или сосудистой стенкой (внутренняя активация), или тканями (внешняя активация). Внутренний путь активации включает активацию белков контактной фазы: ФXII, XI, ПК, ВМК и калликреина. Это важный путь активации плазминогена, но основной – через ткани (внешняя активация); он происходит в результате действия тканевого активатора плазминогена (ТАП), выделяемого эндотелиальными клетками. ТАП также продуцируется другими клетками: моноцитами, мегакариоцитами и мезотелиальными клетками.

        ТАП представляет собой сериновую протеазу, которая циркулирует в крови, образуя комплекс со своим ингибитором, и имеет высокое сродство к фибрину. Зависимость ТАП от фибрина ограничивает образование плазмина зоной аккумуляции фибрина. Как только небольшое количество ТАП и плазминогена соединилось с фибрином, каталическое действие ТАП на плазминоген многократно усиливается. Затем образовавшийся плазмин разлагает фибрин, обнажая новые лизиновые остатки, с которыми связывается другой активатор плазминогена (одноцепочечная урокиназа). Плазмин превращает эту урокиназу в иную форму – активную двуцепочечную, вызывая дальнейшую трансформацию плазминогена в плазмин и растворение фибрина.

        Одноцепочечная урокиназа выявляется в большом количестве в моче. Как и ТАП, она относится к сериновым протеазам. Основная функция этого фермента проявляется в тканях и заключается в разрушении внеклеточного матрикса, что способствует миграции клеток. Урокиназа продуцируется фибробластами, моноцитами/макрофагами и эндотелиальными клетками. В отличие от ТАП циркулирует в не связанной с ИАП форме. Она потенцирует действие ТАП, будучи введённой после (но не до) ТАП.

        Как ТАП, так и урокиназа синтезируются в настоящее время методами рекомбинантной ДНК и пспользуются в качестве лекарственны средств (рекомбинантный тканевой активатор плазминогена, урокиназа). Другими активаторами плазминогена (нефизиологическими) являются стрептокиназа (продуцируемая гемолитическим стрептококком), антистрептлаза (комплекс человеческого плазминогена и бактериальной стрептокиназы) и стафилокиназа (продуцируемая золотистым стафилококком) (рис. 12). Эти вещества используются в качестве фармакологических тромболитических средств, применяются для лечения острого тромбоза (например, при остром коронарном синдроме, ТЭЛА).

        Расщепление плазмином пептидных связей в фибрине и фибриногене приводит к образованию различных дериватов с меньшей молекулярной массой, а именно продуктов деградации фибрина (фибриногена) – ПДФ. Самый крупный дериват называется фрагментом X (икс), который ещё сохраняет аргинин-глициновые связи для дальнейшего действия, осуществляемого тромбином. Фрагмент Y (антитромбин) меньше, чем X, он задерживает полимеризацию фибрина, действуя как конкурентный ингибитор тромбина (рис. 11). Два других, меньших по размеру фрагмента, D и E, ингибируют агрегацию тромбоцитов.

        Плазмин в кровотоке (в жидкой фазе) быстро инактивируется естественно образующимися ингибиторами, но плазмини в фибриновом сгустке (гелевая фаза) защищён от действия ингибиторов и лизирует фибрин локально. Таким образом, в физиологических условиях фибринолиз ограничен зоной фибринообрвазония (гелевая фаза), то есть гемостатической пробкой. Однако при патологических состояниях фибринолиз может стать генерализованным, охватывая обе фазы плазминообразования (жидкую и гелевую), что приводит к литическому состоянию (фибринолитическое состояние, активный фибринолиз). Оно характеризуется образованием избыточного количества ПДФ в крови, а также проявляющимся клинически кровотечением.

      • Клиническое значение нарушений в коагуляционном звене гемостаза и фибринолитической системе

        Врождённое (см. табл. 1) или приобретённое уменьшение содержания или активности плазменных факторов свёртывания может сопровождаться повышенной кровоточивостью (геморрагические диатезы с гематомным типом кровоточивости, например гемофилия А, гемофилия B, афибриногенемия, гипокоагуляционная стадия синдрома диссеминированного внутрисосудистого свёртывания – ДВС, печёночно-клеточная недостаточность и др.; дефицит фактора Виллебранда приводит к развитию геморрагического синдрома со смешанным типом кровоточивости, т.к. ФВ участвует и в сосудисто-тромбоцитарном и в коагуляционном гемостазе). Избыточная активация коагуляционного гемостаза (например, в гиперкоагуляционную фазу ДВС), резистентность факторов свёртывания к соответствующим ингибиторам (например, Лейденская мутация фактора V) или дефицит ингибиторов (например, дефицит АТ III, дефицит PС) приводят к развитию тромбозов (наследственные и приобретённые тромбофилии).

        Избыточная активация фибринолитической системы (например, при наследственном дефиците α 2 -антиплазмина) сопровождается повышенной кровоточивостью, её недостаточность (например, при повышенном уровне ИАП-1) – тромбозами.

        В качестве антикоагулянтов в клинической практике применяются следующие лекарственные препараты: гепарины (нефракционированный гепарин – НФГ и низкомолекулярные гепарины – НМГ), фондапаринукс (взаимодействует с АТ III и селективно ингибирует ФXa), варфарин . Управлением по контролю за качеством пищевых продуктов и лекарственных средств (FDA) США разрешены к применению (по специальным показаниям (например, для лечения гепарининдуцированной тромбоцитопенической пурпуры) внутривенные препараты – прямые ингибиторы тромбина: липерудин, аргатробан, бивалирудин. Клинические испытания проходят пероральные ингибиторы фактора IIa (дабигатран) и фактора Xa (ривароксабан, апиксабан).

        Коллагеновая кровоостанавливающая губка способствует местному гемостазу за счёт активации тромбоцитов и факторов свёртывания контактной фазы (внутренний путь активации гемостаза).

        В клинике используются следующие основные методы исследования системы коагуляционного гемостаза и мониторинга терапии антикоагулянтами: тромбоэластография, определение времени свёртывания крови , времени рекальцификации плазмы, активированного частичного (парциального) тромбопластинового времени (АЧТВ или АПТВ) , протромбинового времени (ПВ), протромбинового индекса, международного нормализованного отношения (МНО) , тромбинового времени , анти-фактор Xa активности плазмы, . транексамовая кислота (циклокапрон). Апротинин (гордокс, контрикал, трасилол) – природный ингибитор протеаз, получаемый из бычьих лёгких. Он подавляет действие многих веществ, участвующих в воспалении, фибринолизе, образовании тромбина. К числу этих веществ относятся калликреин и плазмин.

    • Список литературы
      1. Agamemnon Despopoulos, Stefan Silbernagl. Color Atlas of Physiology 5th edition, completely revised and expanded. Thieme. Stuttgart - New York. 2003.
      2. Физиология человека: в 3-х томах. Т. 2. Пер. с англ./Под ред. Р. Шмидта и Г. Тевса. – 3-е изд. – М.: Мир, 2005. – 314 с., ил.
      3. Шиффман Ф. Дж. Патофизиология крови. Пер. с англ. – М. – Спб.: «Издательство БИНОМ» - «Невский диалект», 2000. – 448 с., ил.
      4. Физиология человека: Учебник/ Под. ред. В. М. Смирнова. – М.: Медицина, 2002. – 608 с.: ил.
      5. Физиология человека: Учебник/ В двух томах. Т. I./ В. М. Покровский, Г. Ф. Коротько, В. И. Кобрин и др.; Под. ред. В. М. Покровского, Г. Ф. Коротько. – М.: Медицина, 1997. – 448 с.: ил.
      6. Ройтберг Г. Е., Струтынский А. В. Лабораторная и инструментальная диагностика заболеваний внутренних органов – М.: ЗАО «Издательство БИНОМ», 1999 г. – 622 с.: ил.
      7. Руководство по кардиологии: Учебное пособие в 3 т. /Под ред. Г. И. Сторожакова, А. А. Горбанченкова. – М.: Гэотар-Медиа, 2008. – Т. 3.
      8. T Wajima1, GK Isbister, SB Duffull. A Comprehensive Model for the Humoral Coagulation Network in Humans. Clinical pharmacology & Therapeutic s, VOLUME 86, NUMBER 3, SEPTEMBER 2009., p. 290-298.
      9. Gregory Romney and Michael Glick. An Updated Concept of Coagulation With Clinical Implications. J Am Dent Assoc 2009;140;567-574.
      10. D. Green. Coagulation cascade. Hemodialysis International 2006; 10:S2–S4.
      11. Клиническая фармакология по Гудману и Гилману. Под общей ред. А. Г. Гилмана. Пер. с англ. под общей ред. к. м. н. Н. Н. Алипова. М., "Практика", 2006.
      12. Bauer KA. New Anticoagulants. Hematology Am Soc Hematol Educ Program. 2006:450-6
      13. Karthikeyan G, Eikelboom JW, Hirsh J. New oral anticoagulants: not quite there yet. Pol Arch Med Wewn. 2009 Jan-Feb;119(1-2):53-8.
      14. Руководство по гематологии в 3 т. Т. 3. Под ред. А. И. Воробьёва. 3-е изд. Перераб. и дополн. М.: Ньюдиамед: 2005. 416 с. С ил.
      15. Andrew K. Vine. Recent advances in hemostasis and thrombosis. RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2009, VOLUME 29, NUMBER 1.
      16. Папаян Л. П. Современная модель гемостаза и механизм действия препарата Ново-Севен // Проблемы гематологии и переливания крови. Москва, 2004, №1. – с. 11-17.

При случайных повреждениях мелких кровеносных сосудов возникающее кровотечение через некоторое время прекращается. Это связано с образованием в месте повреждения сосуда тромба или сгустка. Данный процесс называется свёртыванием крови.

В настоящее время существует классическая ферментативная теория свертывания крови – теория Шмидта – Моравица. Положения этой теории представлены на схеме (рис. 11):

Рис. 11. Схема свертывания крови

Повреждение кровеносного сосуда вызывает каскад молекулярных процессов, в результате образуется сгусток крови - тромб, прекращающий вытекание крови. В месте повреждения к открывшемуся межклеточному матриксу прикрепляются тромбоциты; возникает тромбоцитарная пробка. Одновременно включается система реакций, ведущих к превращению растворимого белка плазмы фибриногена в нерастворимый фибрин, который откладывается в тромбоцитарной пробке и на её поверхности, образуется тромб.

Процесс свёртывания крови протекает в две фазы.

В первой фазе протромбин переходит в активный фермент тромбин под влиянием тромбокиназы, содержащейся в тромбоцитах и освобождающейся из них при разрушении кровяных пластинок, и ионов кальция.

Во второй фазе под влиянием образовавшегося тромбина фибриноген превращается в фибрин.

Весь процесс свёртывания крови представлен следующими фазами гемостаза:

а) сокращение поврежденного сосуда;

б) образование в месте повреждения рыхлой тромбоцитарной пробки, или белого тромба. Коллаген сосуда служит связующим центром для тромбоцитов. При агрегации тромбоцитов освобождаются вазоактивные амины, которые стимулируют сужение сосудов;

в) формирование красного тромба (кровяной сгусток);

г) частичное или полное растворение сгустка.

Белый тромб образуется из тромбоцитов и фибрина; в нем относительно мало эритроцитов (в условиях высокой скорости кровотока). Красный тромб состоит из эритроцитов и фибрина (в областях замедленного кровотока).

В процессе свертывания крови участвуют факторы свертывания крови. Факторы свертывания, связанные с тромбоцитами, принято обозначать арабскими цифрами (1, 2, 3 и т.д.), а факторы свертывания, находящиеся в плазме крови, обозначают римскими цифрами.

Фактор I(фибриноген) - гликопротеин. Синтезируется в печени.

Фактор II(протромбин) - гликопротеин. Синтезируется в печени при участии витамин К. Способен связывать ионы кальция. При гидролитическом расщеплении протромбина образуется активный фермент свертывания крови.

Фактор III(тканевый фактор, или тканевый тромбопластин) образуется при повреждении тканей. Липопротеин.

Фактор IV(ионы Са 2+). Необходимы для образования активного фактораXи активного тромбопластина тканей, активации проконвертина, образования тромбина, лабилизации мембран тромбоцитов.

Фактор V(проакцелерин) - глобулин. Предшественник акцелерина, синтезируется в печени.

Фактор VII(антифибринолизин, проконвертин)- предшественник конвертина. Синтезируется в печени при участии витамина К.

Фактор VIII(антигемофильный глобулин А) необходим для формирования активного фактораX. Врожденный недостаток фактораVIII- причина гемофилии А.

Фактор IX(антигемофильный глобулин В, Кристмас-фактор) принимает участие в образовании активного фактораX. При недостаточностьи фактораIXразвивается гемофилия В.

Фактор X(фактор Стюарта-Прауэра) - глобулин. ФакторXучаствует в образовании тромбина из протромбина. Синтезируется клетками печени при участии витамина К.

Фактор XI(фактор Розенталя) - антигемофильный фактор белковой природы. Недостаточность наблюдается при гемофилии С.

Фактор XII(фактор Хагемана) участвует в пусковом механизме свертывания крови, стимулирует фибринолитическую активность, другие защитные реакции организма.

Фактор XIII(фибринстабилизирующий фактор) - участвует в образовании межмолекулярных связей в фибрин-полимере.

Факторы тромбоцитов. В настоящее время известно около 10 отдельных факторов тромбоцитов. Например: Фактор 1- адсорбированный на поверхности тромбоцитов проакцелерин. Фактор 4 - антигепариновый фактор.

В нормальных условиях тромбина в крови нет, он образуется из белка плазмы протромбина под действием протеолитического фермента фактора Ха (индекс а - активная форма), который образуется при кровопотере из фактора X. Фактор Ха превращает протромбин в тромбин только в присутствии ионов Са 2 + и других факторов свертывания.

Фактор III, переходящий в плазму крови при повреждении тканей, и фактор 3 тромбоцитов создают предпосылки для образования затравочного количества тромбина из протромбина. Он катализирует превращение проакцелерина и проконвертина в акцелерин (факторVa) и в конвертин (факторVIIa).

При взаимодействии перечисленных факторов, а также ионов Са 2+ происходит образование фактора Ха. Затем происходит образование тромбина из протромбина. Под влиянием тромбина от фибриногена отщепляются 2 пептида А и 2 пептида В. Фибриноген превращается в хорошо растворимый фибрин-мономер, который быстро полимеризуется в нерастворимый фибрин-полимер при участии фибринстабилизирующего фактора- фактораXIII(фермент трансглутаминаза) в присутствии ионов Са 2+ (рис. 12).

Фибриновый тромб прикрепляется к матриксу в области повреждения сосуда при участии белка фибронектина. Вслед за образованием нитей фибрина происходит их сокращение, для чего необходима энергия АТФ и фактор 8 тромбоцитов (тромбостенин).

У людей с наследственными дефектами трансглутаминазы кровь свертывается так же, как у здоровых, однако тромб получается хрупкий, поэтому легко возникают вторичные кровотечения.

Кровотечение из капилляров и мелких сосудов останавливается уже при образовании тромбоцитной пробки. Для остановки кровотечения из более крупных сосудов необходимо быстрое образование прочного тромба, чтобы свести к минимуму потерю крови. Это достигается каскадом ферментных реакций с механизмами усиления на многих ступенях.

Различают три механизма активации ферментов каскада:

1. Частичный протеолиз.

2. Взаимодействие с белками-активаторами.

3. Взаимодействие с клеточными мембранами.

Ферменты прокоагулянтного пути содержат γ-карбоксиглутаминовую кислоту. Радикалы карбоксиглутаминовой кислоты образуют центры связывания ионов Са 2+ . В отсутствие ионов Са 2+ кровь не свертывается.

Внешний и внутренний пути свёртывания крови.

Во внешнем пути свертывания крови участвуют тромбопластин (тканевой фактор, факторIII), проконвертин (факторVII), фактор Стюарта (факторX), проакцелерин (факторV), а также Са 2+ и фосфолипиды мембранных поверхностей, на которых образуется тромб. Гомогенаты многих тканей ускоряют свёртывание крови: это действие называют тромбопластиновой активностью. Вероятно, она связана с наличием в тканях какого-то специального белка. ФакторыVIIиX- проферменты. Они активируются путём частичного протеолиза, превращаясь в протеолитические ферменты - факторыVIIа иXа соответственно. ФакторV– это белок, который при действии тромбина превращается в факторV", который не является ферментом, но активирует ферментXа по аллостерическому механизму; активация усиливается в присутствии фосфолипидов и Са 2+ .

В плазме крови постоянно содержатся следовые количества фактора VIIа. При повреждении тканей и стенок сосуда освобождается факторIII– мощный активатор фактораVIIа; активность последнего увеличивается более чем в 15000 раз. ФакторVIIа отщепляет часть пептидной цепи фактораX, превращая его в фермент - факторXа. Сходным образомXа активирует протромбин; образовавшийся тромбин катализирует превращение фибриногена в фибрин, а также превращение предшественника трансглутаминазы в активный фермент (факторXIIIа). Этот каскад реакций имеет положительные обратные связи, усиливающие конечный результат. ФакторXа и тромбин катализируют превращение неактивного фактораVIIв ферментVIIа; тромбин превращает факторVв факторV", который вместе с фосфолипидами и Са 2+ в 10 4 –10 5 раз повышает активность фактораXа. Благодаря положительным обратным связям скорость образования самого тромбина и, следовательно, превращения фибриногена в фибрин нарастают лавинообразно, и в течение 10-12 с кровь свёртывается.

Свёртывание крови по внутреннему механизму происходит значительно медленнее и требует 10-15 мин. Этот механизм называют внутренним, потому что для него не требуется тромбопластин (тканевой фактор) и все необходимые факторы содержатся в крови. Внутренний механизм свёртывания также представляет собой каскад последовательных активаций проферментов. Начиная со стадии превращения фактораXвXа, внешний и внутренний пути одинаковы. Как и внешний путь, внутренний путь свёртывания имеет положительные обратные связи: тромбин катализирует превращение предшественниковVиVIIIв активаторыV" иVIII", которые в конечном итоге увеличивают скорость образования самого тромбина.

Внешний и внутренний механизмы свёртывания крови взаимодействуют между собой. Фактор VII, специфичный для внешнего пути свёртывания, может быть активирован факторомXIIа, который участвует во внутреннем пути свёртывания. Это превращает оба пути в единую систему свёртывания крови.

Гемофилии. Наследственные дефекты белков, участвующих в свёртывании крови, проявляются повышением кровоточивости. Наиболее часто встречается болезнь, вызванная отсутствием фактораVIII– гемофилия А. Ген фактораVIIIлокализован вX- хромосоме; повреждение этого гена проявляется как рецессивный признак, поэтому у женщин гемофилии А не бывает. У мужчин, имеющих однуX-хромосому, наследование дефектного гена приводит к гемофилии. Признаки болезни обычно обнаруживаются в раннем детстве: при малейшем порезе, а то и спонтанно возникают кровотечения; характерны внутрисуставные кровоизлияния. Частая потеря крови приводит к развитию железодефицитной анемии. Для остановки кровотечения при гемофилии вводят свежую донорскую кровь, содержащую факторVIII, или препараты фактораVIII.

Гемофилия В. Гемофилия В обусловлена мутациями гена фактора IX, который, как и ген фактораVIII, локализован в половой хромосоме; мутации рецессивны, следовательно, гемофилия В бывает только у мужчин. Гемофилия В встречается примерно в 5 раз реже, чем гемофилия А. Лечат гемофилию В введением препаратов фактораIX.

При повышенной свертываемости крови могут образоваться внутрисосудистые тромбы, закупоривающие неповрежденные сосуды (тромботические состояния, тромбофилии).

Фибринолиз. Тромб в течение нескольких дней после образования рассасывается. Главная роль в его растворении принадлежит протеолитическому ферменту плазмину. Плазмин гидролизирует в фибрине пептидные связи, образованные остатками аргинина и триптофана, причём образуются растворимые пептиды. В циркулирующей крови находится предшественник плазмина – плазминоген. Он активируется ферментом урокиназой, который содержится во многих тканях. Пламиноген может активироваться калликреином, также имеющимся в тромбе. Плазмин может активироваться и в циркулирующей крови без повреждения сосудов. Там плазмин быстро инактивируется белковым ингибитором α 2 - антиплазмином, в то время как внутри тромба он защищён от действия ингибитора. Урокиназа – эффективное средство для растворения тромбов или предупреждения их образования при тромбофлебитах, тромбоэмболии легочных сосудов, инфаркте миокарда, хирургических вмешательствах.

Противосвёртывающая система. При развитии системы свёртывания крови в ходе эволюции решались две противоположные задачи: предотвращать вытекание крови при повреждении сосудов и сохранять кровь в жидком состоянии в неповреждённых сосудах. Вторая задача решается противосвёртывающей системой, которая представлена набором белков плазмы, ингибирующих протеолитические ферменты.

Белок плазмы антитромбин IIIингибирует все протеиназы, участвующие в свёртывании крови, кроме фактораVIIа. Он не действует на факторы, находящиеся в составе комплексов с фосфолипидами, а только на те, которые находятся в плазме в растворённом состоянии. Следовательно, он нужен не для регуляции образования тромба, а для устранения ферментов, попадающих в кровоток из места образования тромба, тем самым он предотвращает распространение свёртывания крови на поврежденные участки кровеносного русла.

В качестве препарата, предотвращающего свёртывание крови, применяется гепарин. Гепарин усиливает ингибирующее действие антитромбина III: присоединение гепарина индуцирует конформационные изменения, которые повышают сродство ингибитора к тромбину и другим факторам. После соединения этого комплекса с тромбином гепарин освобождается и может присоединяться к другим молекулам антитромбинаIII. Таким образом, каждая молекула гепарина может активировать большое количество молекул антитромбинаIII; в этом отношении действие гепарина сходно с действием катализаторов. Гепарин применяют как антикоагулянт при лечении тромботических состояний. Известен генетический дефект, при котором концентрация антитромбинаIIIв крови вдвое меньше, чем в норме; у таких людей часто наблюдаются тромбозы. АнтитромбинIII– главный компонент противосвёртывающей системы.

В плазме крови есть и другие белки – ингибиторы протеиназ, которые также могут уменьшать вероятность внутрисосудистого свёртывания крови. Таким белком является α 2 - макроглобулин, который ингибирует многие протеиназы, и не только те, которые участвуют в свёртывании крови. α 2 -Макроглобулин содержит участки пептидной цепи, которые являются субстратами многих протеиназ; протеиназы присоединяются к этим участкам, гидролизируют в них некоторые пептидные связи, в результате чего изменяется конформация α 2 -макроглобулина, и он захватывает фермент, подобно капкану. Фермент при этом не повреждается: в комплексе с ингибитором он способен гидролизировать низкомолекулярные пептиды, но для крупных молекул активный центр фермента не доступен. Комплекс α 2 -макроглобулина с ферментом быстро удаляется из крови: время его полужизни в крови около 10 мин. При массивном поступлении в кровоток активированных факторов свёртывания крови мощность противосвёртывающей системы может оказаться недостаточной, и появляется опасность тромбозов.

Витамин К. В пептидных цепях факторовII,VII,IX, иXсодержится необычная аминокислота - γ-карбоксиглутаминовая. Эта аминокислота образуется из глутаминовой кислоты в результате посттрансляционной модификации указанных белков:

Реакции, в которых участвуют факторы II,VII,IX, иX, активируются ионами Са 2+ и фосфолипидами: радикалы γ-карбоксиглутаминовой кислоты образуют центры связывания Са 2+ на этих белках. Перечисленные факторы, а также факторыV" иVIII" прикрепляютя к бислойным фосфолипидным мембранам и друг к другу при участии ионов Са 2+ , и в таких комплексах происходит активация факторовII,VII,IX, иX. Ион Са 2+ активирует также и некоторые другие реакции свёртывания: декальцинированная кровь не свёртывается.

Превращение глутамильного остатка в остаток γ-карбоксиглутаминовой кислоты катализируется ферментом, коферментом которого служит витамин К. Недостаточность витамина К проявляется повышенной кровоточивостью, подкожными и внутренними кровоизлияниями. В отсутствие витамина К образуются факторы II,VII,IX, иX, не содержащие γ-карбоксиглутаминовых остатков. Такие проферменты не могут превращаться в активные ферменты.

Кровь движется в нашем организме по кровеносным сосудам и имеет жидкое состояние. Но в случае нарушения целостности сосуда, она за достаточно малый промежуток времени образует сгусток, который называют тромб или «кровяной сгусток». С помощью тромба ранка закрывается, и тем самым останавливается кровотечение. Рана со временем затягивается. В противном случае, если процесс свертывания крови по каким-либо причинам нарушен, человек может погибнуть даже от небольшого повреждения.

Почему кровь сворачивается?

Свертывание крови является очень важной защитной реакцией организма человека. Оно препятствует потере крови, при этом сохраняется постоянство ее объема, находящегося в организме. Механизм свертывания запускается при помощи изменения физико-химического состояния крови, которое основано на растворенном в ее плазме белке фибриногене.

Фибриноген способен превращаться в нерастворимый фибрин, выпадающий в виде тоненьких нитей. Эти самые нити могут образовывать густую сеть с мелкими ячейками, которая задерживает форменные элементы. Вот так и получается тромб. Со временем кровяной сгусток постепенно уплотняется, стягивает края раны и тем самым способствует ее скорейшему заживлению. При уплотнении сгусток выделяет желтоватую прозрачную жидкость, которая называется сывороткой.

В свертывании крови участвуют также тромбоциты, которые уплотняют сгусток. Этот процесс похож на получение творога из молока, когда сворачивается казеин (белок) и так же образуется сыворотка. Рана в процессе заживления способствует постепенному рассасыванию и растворению сгустка фибрина.

Как запускается процесс свертывания?

А. А. Шмидт в 1861 году выяснил, что процесс свертывания крови является полностью ферментативным. Он установил, что превращение фибриногена, который растворен в плазме, в фибрин (нерастворимый специфический белок), происходит при участии тромбина - особого фермента.

У человека в крови постоянно имеется немного тромбина, который находится в неактивном состоянии, протромбине, как его еще называют. Протромбин образуется в печени человека и превращается в активный тромбин под воздействием тромбопластина и солей кальция, имеющихся в плазме. Нужно сказать, что тромбопластин не содержится в крови, он образуется только в процессе разрушения тромбоцитов и при повреждениях других клеток организма.

Возникновение тромбопластина - это довольно сложный процесс, так как кроме тромбоцитов в нем участвуют некоторые белки, содержащиеся в плазме. При отсутствии в крови отдельных белков свертывание крови может быть замедлено или вообще не происходить. Например, если в плазме недостает одного из глобулинов, то развивается всем известное заболевание гемофилия (или по другому - кровоточивость). Те люди, которые живут с этим недугом, могут потерять значительные объемы крови вследствие даже небольшой царапины.

Фазы свертывания крови

Таким образом, свертывание крови - это поэтапный процесс, который состоит из трех фаз. Первая считается самой сложной, в процессе которой происходит образование комплексного соединения тромбопластина. В следующей фазе для свертывания крови необходимы тромбопластин и протромбин (неактивный фермент плазмы). Первый оказывает действие на второй и, тем самым превращает его в активный тромбин. И в заключительной третьей фазе тромбин, в свою очередь, оказывает воздействие на фибриноген (белок, который растворен в плазме крови), превращая его в фибрин - нерастворимый белок. То есть с помощью свертывания кровь переходит из жидкого в желеобразное состояние.

Типы тромбов

Выделяют 3 типа кровяных сгустков или тромбов:

  1. Из фибрина и тромбоцитов образуется белый тромб, он содержит относительно небольшое количество эритроцитов. Обычно появляется в тех местах повреждения сосуда, где кровоток обладает большой скоростью (в артериях).
  2. В капиллярах (очень маленьких сосудах) образуется диссеминированные отложения фибрина. Это и есть второй тип тромбов.
  3. И последние - это красные тромбы. Они появляются в местах замедленного кровотока и при обязательном отсутствии изменений в стенке сосуда.

Факторы свертывания крови

Образование тромба является очень сложным процессом, в нем участвуют многочисленные белки и ферменты, которые находятся в плазме крови, тромбоцитах и ткани. Это и есть факторы свертывания крови. Те из них, которые содержатся в плазме, принято обозначать римскими цифрами. Арабскими указываются факторы тромбоцитов. В организме человека имеются все факторы свертываемости крови, находящиеся в неактивном состоянии. При повреждении сосуда происходит быстрая последовательная активация их всех, в результате этого кровь сворачивается.

Свертывание крови, норма

Для того чтобы определить, нормально ли сворачивается кровь, проводят исследование, которое называется коагулограммой. Сделать такой анализ необходимо, если у человека есть тромбозы, аутоиммунные заболевания, варикозное расширение вен, острые и хронические кровотечения. Также обязательно его проходят беременные женщины и те, кто готовится к операции. Для такого рода исследования обычно берут кровь из пальца или вены.

Время свертывания крови - это 3-4 минуты. По прошествии 5-6 минут она полностью сворачивается и становится студенистым сгустком. Что касается капилляров, то тромб образуется за время около 2-х минут. Известно, что с возрастом время, затрачиваемое на свертывание крови, увеличивается. Так, у детей от 8 до 11 лет этот процесс начинается через 1,5-2 минуты, а заканчивается уже по истечении 2,5-5 минут.

Показатели свертываемости крови

Протромбин - это белок, который отвечает за свертывание крови и является важным составляющим элементом тромбина. Его норма 78-142%.

Протромбиновый индекс (ПТИ) вычисляется как отношение ПТИ, принятого за стандарт, к ПТИ обследуемого пациента, выражается в процентах. Нормой является 70-100%.

Протромбиновое время - это период времени, за который происходит свертывание, в норме 11-15 секунд у взрослых и 13-17 секунд у новорожденных. С помощью этого показателя можно диагностировать ДВС-синдром, гемофилию и контролировать состояние крови при приеме гепарина. Тромбиновое время является самым главным показателем, в норме оно составляет от 14 до 21 секунды.

Фибриноген является белком плазмы, он несет ответственность за образование тромба, его количество может сообщить о воспалении в организме. У взрослых его содержание должно быть 2,00-4,00 г/л, у новорожденных же 1,25-3,00 г/л.

Антитромбин - это специфический белок, который обеспечивает рассасывание образовавшегося тромба.

Две системы нашего организма

Конечно, при кровотечениях очень важна быстрая свертываемость крови, чтобы свести кровопотери к нулю. Сама же она всегда должна оставаться в жидком состоянии. Но существуют патологические состояния, приводящие к свертыванию крови внутри сосудов, а это представляет большую опасность для человека, чем кровоточивость. Такие заболевания, как тромбозы венечных сердечных сосудов, тромбозы легочной артерии, тромбозы сосудов головного мозга и др., связаны с этой проблемой.

Известно, что в организме человека сосуществуют две системы. Одна способствует скорейшему свертыванию крови, вторая же всячески этому препятствуют. Если же обе эти системы находятся в равновесии, то кровь будет сворачиваться при внешних повреждениях сосудов, а внутри них будет жидкой.

Что способствует свертыванию крови?

Ученые доказали, что нервная система может оказать влияние на процесс образования кровяного сгустка. Так, время свертывания крови уменьшается при болевых раздражениях. Условные рефлексы могут также оказать влияние на свертывание. Такое вещество, как адреналин, которое выделяется из надпочечников, способствует скорейшему свертыванию крови. Одновременно с этим он способен сделать артерии и артериолы более узкими и таким образом снизить возможные кровопотери. В свертывании крови участвуют также витамин К и соли кальция. Они помогают скорейшему протеканию этого процесса, но есть и другая система в организме, которая препятствует ему.

Что препятствует свертыванию крови?

В клетках печени, легких имеется гепарин - особое вещество, прекращающее свертывание крови. Оно не дает образовываться тромбопластину. Известно, что содержание гепарина у юношей и подростков после работы уменьшается на 35-46%, у взрослых же не изменяется.

Сыворотка крови содержит белок, который получил название фибринолизин. Он участвует в растворении фибрина. Известно, что боль средней силы может ускорить свертываемость, однако сильная боль замедляет этот процесс. Препятствует свертыванию крови низкая температура. Оптимальной считается температура тела здорового человека. На холоде кровь сворачивается медленно, иногда этот процесс вообще не происходит.

Увеличивать время свертывания могут соли кислот (лимонной и щавелевой), осаждающие необходимые для быстрого свертывания соли кальция, а также гирудин, фибринолизин, лимоннокислый натрий и калий. Медицинские пиявки могут вырабатывать с помощью шейных желез особое вещество - гирудин, которое обладает противосвертывающим эффектом.

Свертываемость у новорожденных

В первую неделю жизни новорожденного свертываемость его крови происходит очень медленно, но уже в течение второй недели показатели уровня протромбина и всех факторов свертывания приближаются к норме взрослого человека (30-60%). Уже через 2 недели после появления на свет содержание фибриногена в крови сильно возрастает и становится как у взрослого человека. К концу первого года жизни у ребенка приближается к норме взрослого содержание остальных факторов свертывания крови. Они достигают нормы к 12 годам.

Во внешнем пути свертывания крови участвуют тромбопластин (тканевой фактор, фактор III), проконвертин (фактор VII), фактор Стюарта (фактор X), проакцелерин (фактор V), а также Са 2+ и фосфолипиды мембранных поверхностей, на которых образуется тромб (рис. 32). Гомогенаты многих тканей ускоряют свёртывание крови: это действие называют тромбопластиновой активностью. Вероятно, она связана с наличием в тканях какого-то специального белка. Факторы VII и X - проферменты. Они активируются путём частичного протеолиза, превращаясь в протеолитические ферменты - факторы VIIа и Xа соответственно. Фактор V – это белок, который при действии тромбина превращается в фактор V", который не является ферментом, но активирует фермент Xа по аллостерическому механизму; активация усиливается в присутствии фосфолипидов и Са 2+ .

Рис. 32. Схема свертывания крови

В плазме крови постоянно содержатся следовые количества фактора VIIа. При повреждении тканей и стенок сосуда освобождается фактор III – мощный активатор фактора VIIа; активность последнего увеличивается более чем в 15000 раз. Фактор VIIа отщепляет часть пептидной цепи фактора X, превращая его в фермент - фактор Xа. Сходным образом Xа активирует протромбин; образовавшийся тромбин катализирует превращение фибриногена в фибрин, а также превращение предшественника трансглутаминазы в активный фермент (фактор XIIIа). Под влиянием тромбина от фибриногена отщепляются 2 пептида А и 2 пептида В. Фибриноген превращается в хорошо растворимый фибрин-мономер, который быстро полимеризуется в нерастворимый фибрин-полимер при участии фибринстабилизирующего фактора XIII (трансглутаминаза) в присутствии ионов Са 2+ (рис. 33). Этот каскад реакций имеет положительные обратные связи, усиливающие конечный результат. Фактор Xа и тромбин катализируют превращение неактивного фактора VII в фермент VIIа; тромбин превращает фактор V в фактор V", который вместе с фосфолипидами и Са 2+ в 10 4 –10 5 раз повышает активность фактора Xа. Благодаря положительным обратным связям скорость образования самого тромбина и, следовательно, превращения фибриногена в фибрин нарастают лавинообразно, и в течение 10-12 с кровь свертывается.

Фибриновый тромб прикрепляется к матриксу в области повреждения сосуда при участии белка фибронектина. Вслед за образованием нитей фибрина происходит их сокращение, для чего необходима энергия АТФ и фактор 8 тромбоцитов (тромбостенин).

Свертывание крови по внутреннему механизму происходит значительно медленнее и требует 10-15 мин. Этот механизм называют внутренним, потому что для него не требуется тромбопластин (тканевой фактор) и все необходимые факторы содержатся в крови (рис. 32). Внутренний механизм свёртывания также представляет собой каскад последовательных активаций проферментов. Начиная со стадии превращения фактора X в Xа, внешний и внутренний пути одинаковы. Как и внешний путь, внутренний путь свертывания имеет положительные обратные связи: тромбин катализирует превращение предшественников V и VIII в активаторы V" и VIII", которые в конечном итоге увеличивают скорость образования самого тромбина.

Внешний и внутренний механизмы свертывания крови взаимодействуют между собой. Фактор VII, специфичный для внешнего пути свёртывания, может быть активирован фактором XIIа, который участвует во внутреннем пути свертывания. Это превращает оба пути в единую систему свёртывания крови.

Кровотечение из капилляров и мелких сосудов останавливается уже при образовании тромбоцитной пробки. Для остановки кровотечения из более крупных сосудов необходимо быстрое образование прочного тромба, чтобы свести к минимуму потерю крови. Это достигается каскадом ферментных реакций с механизмами усиления на многих ступенях.

Различают три механизма активации ферментов каскада:

1. Частичный протеолиз.

2. Взаимодействие с белками-активаторами.

3. Взаимодействие с клеточными мембранами.

Ферменты прокоагулянтного пути (факторы II, VII, IX и X) содержат
γ-карбоксиглутаминовую кислоту. Эта аминокислота образуется из глутаминовой кислоты в результате посттрансляционной модификации указанных белков. Превращение глутамильного остатка в остаток
γ-карбоксиглутаминовой кислоты катализируется ферментом, коферментом которого служит витамин К.

Реакции, в которых участвуют факторы II, VII, IX и X, активируются ионами Са 2+ и фосфолипидами: радикалы γ-карбоксиглутаминовой кислоты образуют центры связывания Са 2+ на этих белках. Перечисленные факторы, а также факторы V" и VIII" прикрепляютя к бислойным фосфолипидным мембранам и друг к другу при участии ионов Са 2+ , и в таких комплексах происходит активация факторов II, VII, IX и X. Ион Са 2+ активирует также и некоторые другие реакции свёртывания: декальцинированная кровь не свертывается.

В отсутствие витамина К образуются факторы II, VII, IX, и X, не содержащие γ-карбоксиглутаминовых остатков. Такие проферменты не могут превращаться в активные ферменты. Недостаточность витамина К проявляется повышенной кровоточивостью, подкожными и внутренними кровоизлияниями.

У людей с наследственными дефектами трансглутаминазы кровь свертывается так же, как у здоровых, однако тромб получается хрупкий, поэтому легко возникают вторичные кровотечения.

При повышенной свертываемости крови могут образоваться внутрисосудистые тромбы, закупоривающие неповрежденные сосуды (тромботические состояния, тромбофилии).

Наследственные дефекты белков, участвующих в свёртывании крови, проявляются повышением кровоточивости .

Гемофилии – заболевания из группы наследственных коагулопатий, обусловленные дефицитом факторов свертывания плазмы крови и характеризующиеся повышенной склонностью к геморрагиям.

Гемофилия А вызвана отсутствием фактора VIII. Она составляет подавляющее большинство (около 85%) случаев синдрома. Ген фактора VIII локализован в X- хромосоме; повреждение этого гена проявляется как рецессивный признак, поэтому заболевание наследуется по рецессивному признаку по женской линии. У мужчин, имеющих одну X-хромосому, наследование дефектного гена приводит к гемофилии. Признаки болезни обычно обнаруживаются в раннем возрасте: малейшие повреждения приводят к кровотечениям. Наблюдаются также спонтанные носовые кровотечения, внутрисуставные кровоизлияния. Ввиду постоянных и длительных кровотечений у детей с гемофилией наблюдается анемия различной степени выраженности.

Гемофилия В. Гемофилия В обусловлена мутациями гена фактора IX, который, как и ген фактора VIII, локализован в половой хромосоме. Мутации рецессивны, следовательно, гемофилией В болеют в основном мужчины. Данный вид гемофилии составляет около 13% случаев заболевания.

Основной метод лечения - заместительная терапия. Для остановки кровотечения при гемофилии А вводят свежую донорскую кровь, содержащую фактор VIII, или препараты фактора VIII, при гемофилии В - препараты фактора IX.

Фибринолиз. В течение нескольких дней после образования тромба происходит его рассасывание. В этом процессе принимает участие ферментная система, расщепляющая фибриновый сгусток на мелкие растворимые фрагменты. Основным компонентом этой системы является протеолитический фермент плазмин. Плазмин гидролизирует в фибрине пептидные связи, образованные остатками аргинина и триптофана, в результате чего образуются растворимые пептиды. В циркулирующей крови плазмин находится в виде предщественника – плазминогена. Пламиноген может активироваться комплексом фактора XIIа с калликреином, имеющимся в тромбе, а также белковым активатором тканевого типа, синтезируемым в эндотелии сосудов, и ферментом урокиназой, образующейся в юкстогломерулярном комплексе почек. Плазмин может активироваться и в циркулирующей крови без повреждения сосудов. Там плазмин быстро инактивируется белковым ингибитором α 2 - антиплазмином, в то время как внутри тромба он защищён от действия ингибитора.

Урокиназа находит применение для растворения тромбов или предупреждения их образования при тромбофлебитах, тромбоэмболии легочных сосудов, инфаркте миокарда, хирургических вмешательствах. Известны две молекулярные формы этого активатора.

Противосвертывающая система представлена набором белков плазмы, ингибирующих протеолитические ферменты. Ее основная функция - сохранять кровь в жидком состоянии в неповреждённых сосудах и ограничивать процесс тромбообразования.

Белок плазмы антитромбин III создает 75% всей антикоагулянтной активности плазмы крови. Он ингибирует все протеиназы, участвующие в свёртывании крови, кроме фактора VIIа. Антитромбин III не действует на факторы, находящиеся в составе комплексов с фосфолипидами, а только на те, которые находятся в плазме в растворенном состоянии. Таким образом, он устраняет ферменты, попадающие в кровоток из места образования тромба, и предотвращает распространение свертывания крови на неповрежденные участки кровеносного русла.

Известен генетический дефект, при котором концентрация антитромбина III в крови вдвое меньше, чем в норме; у таких людей часто наблюдаются тромбозы.

Гепарин – сульфатированный полисахарид, усиливающий ингибирующее действие антитромбина III: он индуцирует конформационные измененияв молекуле антитромбина III, которые повышают сродство ингибитора к тромбину и другим факторам. После соединения этого комплекса с тромбином гепарин освобождается и может присоединяться к другим молекулам антитромбина III. Таким образом, действие гепарина сходно с действием катализаторов.

Гепарин применяют как антикоагулянт при лечении тромботических состояний.

В плазме крови есть и другие белки – ингибиторы протеиназ, которые также могут уменьшать вероятность внутрисосудистого свёртывания крови. Таким белком является α 2 - макроглобулин, который ингибирует многие протеиназы, и не только те, которые участвуют в свертывании крови.
α 2 -Макроглобулин содержит участки пептидной цепи, которые являются субстратами многих протеиназ; протеиназы присоединяются к этим участкам, гидролизируют в них некоторые пептидные связи, в результате чего изменяется конформация α 2 -макроглобулина, и он захватывает фермент, подобно капкану. Фермент при этом не повреждается: в комплексе с ингибитором он способен гидролизировать низкомолекулярные пептиды, но для крупных молекул активный центр фермента не доступен. Комплекс α 2 -макроглобулина с ферментом быстро удаляется из крови: время его полужизни в крови около 10 мин. При массивном поступлении в кровоток активированных факторов свертывания крови мощность противосвертывающей системы может оказаться недостаточной, и появляется опасность тромбозов.

Контрольные вопросы

1. Перечислите функции белков плазмы крови.

2. Как может измениться уровень альбуминов плазмы при поражении печени? Почему?

3. По какому принципу классифицируют ферменты плазмы крови? Какие из них имеют важное диагностическое значение?

4. Рассмотрите механизм транспорта кислорода и углекислого газа кровью.

5. Назовите важнейшие буферные системы крови.

6. Какие заболевания приводят к развитию метаболического ацидоза?

7. Изложите современные представления о свертывании крови.

8. Какое значение имеет витамин К в синтезе факторов свертывания крови?

9. Какие механизмы приводят к активации ферментов каскада свертывания крови?

10. Что такое антикоагулянтный путь?

11. Охарактеризуйте функционирование противосвертывающей системы крови.

12. Каковы причины развития гемофилий А и В? В чем их отличия?