Синтез жиров происходит в. Биосинтез жиров из углеводов

Синтезируются жиры из глицерина и жирных кислот.

Глицерин в организме возникает при распаде жира (пищевого и собственного), а также легко образуются из углеводов.

Жирные кислоты синтезируются из ацетилкофермента А. Ацетилкофермент А – универсальный метаболит. Для его синтеза необходимы водород и энергия АТФ. Водород же получается из НАДФ.Н2. В организме синтезируются только насыщенные и мононасыщенные (имеющие одну двойную связь) жирные кислоты. Жирные кислоты, имеющие две и более двойных связей в молекуле, называемые полинасыщенные, в организме не синтезируются и должны поступать с пищей. Для синтеза жира могут быть использованы жирные кислоты – продукты гидролиза пищевого и собственного жиров.

Все участники синтеза жира должны быть в активном виде: глицерин в форме глицерофосфата , а жирные кислоты в форме ацетилкофермента А. Синтез жира осуществляется в цитоплазме клеток (преимущественно жировой ткани, печени, тонкой кишки). Пути синтеза жиров представлены в схеме.

Следует отметить, что глицерин и жирные кислоты могут быть получены из углеводов. Поэтому при избыточном потреблении их на фоне малоподвижного образа жизни развивается ожирение.

ДАФ –дигидроацетонфосфат,

ДАГ – диацилглицерин.

ТАГ – триацилглицерол.

Общая характеристика липопротеинов. Липиды в водной среде (а значит, и в крови) нерастворимы, поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками – липопротеины.

Все типы липопротеинов имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные части – к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.

Апопротеины выполняют несколько функций:

Формируют структуру липопротеинов;

Взаимодействуют с рецепторами на поверхности клеток и таким образом определяют, какими тканями будет захватываться данный тип липопротеинов;

Служат ферментами или активаторами ферментов, действующих на липопротеины.

Липопротеины. В организме синтезируются следующие типы липопротеинов: хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП).Каждый из типов ЛП образуется в разных тканях и транспортирует определѐнные липиды. Например, ХМ транспортируют экзогенные (пищевые жиры) из кишечника в ткани, поэтому триацилглицеролы составляют до 85% массы этих частиц.

Свойства липопротеинов. ЛП хорошо растворимы в крови, неопалесцируют, так как имеют небольшойразмер и отрицательный заряд на

поверхности. Некоторые ЛП легко проходят через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам. Большой размер ХМ не позволяет им проникать через стенки капилляров, поэтому из клеток кишечника они сначала попадают в лимфатическую систему и потом через главный грудной проток вливаются в кровь вместе с лимфой. Судьба жирных кислот, глицерола и остаточных хиломикронов. В результате действия ЛП-липазы на жиры ХМ образуются жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткани. В жировой ткани в абсорбтивный период жирные кислоты депонируются в виде триацилглицеролов, в сердечной мышце и работающих скелетных мышцах используются как источник энергии. Другой продукт гидролиза жиров, глицерол, растворим в крови, транспортируется в печень, где в абсорбтивный период может быть использован для синтеза жиров.

Гиперхиломикронемия, гипертриглицеронемия. После приѐма пищи, содержащей жиры, развивается физиологическая гипертриглицеронемия и, соответственно, гиперхиломикронемия, которая может продолжаться до нескольких часов.Скорость удаления ХМ из кровотока зависит от:

Активности ЛП-липазы;

Присутствия ЛПВП, поставляющих апопротеины С-II и Е для ХМ;

Активности переноса апоС-II и апоЕ на ХМ.

Генетические дефекты любого из белков, участвующих в метаболизме ХМ, приводят к развитию семейной гиперхиломикронемии – гиперлипопротеинемии типа I.

В растениях одного и того же вида состав и свойства жира могут колебаться в зависимости от климатических условий произрастания. Содержание и качество жиров в животном сырье также зависит от породы, возраста, степени упитанности, пола, сезона года и т.д.

Жиры широко используют, при производстве многих пищевых продуктов, они обладают высокой калорийностью и пищевой ценностью, вызывают длительное чувство насыщения. Жиры являются важными вкусовыми и структурными компонентами в процессе приготовления пищевых продуктов, оказывают значительное влияние на внешний вид пищи. При жарке жир играет роль среды, передающей тепло.

Название продукта Название продукта Примерное содержа-ние жиров в пищевых продуктах, % на сырую массу
Семена: Хлеб ржаной 1,20
Подсолнечника 35-55 Овощи свежие 0,1-0,5
Конопли 31-38 Плоды свежие 0,2-0,4
Мака Говядина 3,8-25,0
Какао-бобы Свинина 6,3-41,3
Орехи арахиса 40-55 Баранина 5,8-33,6
Орехи грецкие (ядра) 58-74 Рыба 0,4-20
Хлебные злаки: Молоко коровье 3,2-4,5
Пшеница 2,3 Масло сливочное 61,5-82,5
Рожь 2,0 Маргарин 82,5
Овес 6,2 Яйца 12,1

В жирах, полученных из растительных и животных тканей, кроме глицеридов, могут находиться свободные жирные кислоты, фосфатиды, стеролы, пигменты, витамины, вкусовые и ароматические вещества, ферменты, белки и др., которые влияют на качество и свойства жиров. На вкус и запах жиров также оказывают влияние вещества, образующиеся в жирах при хранении (альдегиды, кетоны, перекисные и другие соединения).

Энергия образуется за счет окисления жиров и углеводов. Однако, их избыточное количество приводит к ожирению, а недостаток глюкозы к отравлению организма.

Для нормальной жизнедеятельности любого организма энергия должна быть в достаточных количествах. Главным ее источником является глюкоза. Однако не всегда углеводы полностью компенсируют энергетические потребности, поэтому важен синтез липидов – процесс, который обеспечивает энергией клетки, при малой концентрации сахаров.

Жиры и углеводы также являются каркасом для многих клеток и компонентами для процессов, обеспечивающих нормальное функционирование организма. Их источниками являются компоненты, поступающие с пищей. В виде гликогена запасается глюкоза, а ее избыточное количество превращается в жиры, которые содержатся в адипоцитах. При большом потреблении углеводов увеличение жирных кислот происходит за счет продуктов, которые ежедневно употребляются.

Процесс синтеза не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности. Не все 100% жиров, которые поступают с пищей, оказываются в кровотоке. Из них 2% выводится кишечником неизмененными. Это связано как с самой пищей, так и с процессом всасывания.

Жиры, поступающие с едой, не могут использоваться организмом без дополнительного расщепления до спирта (глицерина) и кислот. Эмульгирование происходит в 12-перстной кишке с обязательным участием ферментов самой стенки кишечника и желез внутренней секреции. Не менее важной является желчь, которая активирует фосфолипазы. Уже после расщепления спирт, жирные кислоты поступают в кровь. Биохимия процессов не может быть простой, так как зависит от множества факторов.

Жирные кислоты

Все они делятся на:

  • короткие (количество атомов углерода не превышает 10);
  • длинные (углерода больше 10).

Коротким не нужны дополнительные соединения и вещества, чтобы попасть в кровоток. В то время как длинные жирные кислоты обязательно должны создать комплекс с желчными кислотами.

Короткие жирные кислоты и их способность быстро всасываться без дополнительных соединений важна для младенцев, чей кишечник еще не работает как у взрослых. Кроме того, само грудное молоко содержит только короткие цепочки.

Полученные соединения жирных кислот с желчными называются мицеллами. Они имеют гидрофобную сердцевину, не растворимую в воде и состоящую из жиров, и гидрофильную оболочку (растворимую за счет желчных кислот). Именно желчные кислоты позволяют липидам транспортироваться в адипоциты.

Мицелла распадается на поверхности энтероцитов и кровь насыщается чистыми жирными кислотами, которые вскоре оказываются в печени. В энтероцитах образуется хиломикроны и липопротеиды. Эти вещества – соединения жирных кислот, белка и именно они доставляют любой клетке полезные вещества.

Желчные кислоты не выделяются кишечником. Малая часть проходит через энтероциты и попадает в кровь, а большая часть перемещается до конца тонкой кишки и всасывается посредством активного транспорта.

Состав хиломикрон:

  • триглицериды;
  • эфиры холестерина;
  • фосфолипиды;
  • свободный холестерин;
  • белок.

Хиломикроны, которые образуется внутри клеток кишечника, еще молодые, большие по размеру, поэтому не могут оказаться в крови самостоятельно. Они транспортируются в лимфатическую систему и только после прохождения главного протока попадают в кровь. Там они взаимодействуют с липопротеидами высокой плотности и образуют белки апо-С и апо-Е.

Только после этих превращений хиломикроны можно называть зрелыми, так как именно они используются на нужды организма. Основная задача – это транспортировка липидов к тканям, которые запасают их или используют. К ним можно отнести жировую ткань, легкие, сердце, почки.

Хиломикроны появляются после еды, поэтому и процесс синтеза и транспортировки жира активируется только после приема пищи. Некоторые ткани не могут в чистом виде поглощать эти комплексы, поэтому часть связывается с альбумином и только после этого потребляется тканью. Примером может служить скелетная ткань.

Фермент липопротеинлипаза снижает триглицериды у хиломикрон, отчего уменьшаются, становятся остаточными. Именно они полностью попадают в гепатоциты и там заканчивается процесс их расщепления до составляющих компонентов.

Биохимия синтеза эндогенного жира происходит с использованием инсулина. Его количество зависит от концентрации углеводов в крови, поэтому для того, чтобы жирные кислоты поступили в клетку, необходим сахар.

Ресинтез липидов

Ресинтез липидов – процесс, благодаря которому происходит синтезирование липидов в стенке, клетке кишечника из жиров, которые поступают в организм с пищей. В качестве дополнения могут быть задействованы и жиры, которые продуцируются внутри.

Этот процесс является одним из важных, так как позволяет связывать длинные жирные кислоты и препятствовать их разрушающему действию на мембраны. Чаще всего эндогенные жирные кислоты связываются со спиртом, таким как глицерол или холистерол.

Процесс ресинтеза не заканчивается на связывании. Далее происходит упаковка в формы, которые способны покинуть энтероцит, так называемые транспортные. Именно в самом кишечнике происходит образование двух видов липопротеинов. К ним относятся хиломикроны, которые непостоянно находятся в крови и их появление зависит от приема пищи, и липопротеины высокой плотности, что являются постоянными формами, и их концентрация не должна превышать 2 г/л.

Использование жиров

К сожалению, использование триглицеридов (жиров) для энергообеспечения организма считается очень трудоемким, поэтому этот процесс считается резервным, даже несмотря на то, что он намного эффективнее, чем получение энергии из углеводов.

Липиды для энергетического обеспечения организма используются только, если отмечается недостаточное количество глюкозы. Такое происходит при долгом отсутствии потребления пищи, после активной нагрузки или после длительного ночного сна. После окисления жиров получается энергия.

Но так как организм не нуждается во всей энергии, то ей приходится аккумулироваться. Она скапливается в виде АТФ. Именно эта молекула используется клетками для многих реакций, что протекают только с затратой энергии. Преимущество АТФ в том, что она подходит для всех клеточных структур организма. Если глюкоза содержится в достаточном объеме, то 70% энергии покрывается окислительными процессами глюкозы и только оставшиеся проценты окислением жирных кислот. При снижении аккумулированного углевода в организме преимущество переходит к окислению жиров.

Чтобы количество поступающих веществ не было больше, чем выход, для этого нужны потребляемые жиры и углеводы в пределах нормы. В среднем человеку требуется 100 г жиров в день. Это обоснованно тем, что только 300 мг сможет всосаться из кишечника в кровь. Большее количество будет выведено практически неизменно.

Важно помнить, что при недостатке глюкозы окисление липидов невозможно. Это приведет к тому, что в избыточном количестве в клетке будут накапливаться продукты окисления – ацетон и его производные. Превышение нормы постепенно отравляет организм, пагубно влияет на нервную систему и при отсутствии помощи может привести к летальному исходу.

Биосинтез жиров – неотъемлемый процесс функционирования организма. Он является запасным источником получения энергии, который в отсутствии глюкозы поддерживает все биохимические процессы на должном уровне. Транспортировка жирных кислот к клеткам осуществляется хиломикронами и липопротеидами. Особенностью является то, что хиломикроны появляются только после приема пищи, а липопротеиды присутствуют в крови постоянно.

Биосинтез липидов – процесс, который зависит от множества дополнительных процессов. Присутствие глюкозы должно быть обязательным, так как накопление ацетона из-за неполного окисления липидов может привести к постепенному отравлению организма.

Синтез липидов и углеводов в клетке

Липиды имеют очень большое значение в метаболизме клетки. Все липиды - ϶ᴛᴏ органические водонерастворимые соединœения, присутствующие во всœех живых клетках. Необходимо отметить, что по своим функциям липиды разделяются на три группы:

- структурные и рецепторные липиды клеточных мембран

- энергетическое ʼʼдепоʼʼ клеток и организмов

- витамины и гормоны ʼʼлипиднойʼʼ группы

Основу липидов составляют жирные кислоты (насыщенные и ненасыщенные) и органический спирт – глицерол. Основную массу жирных кислот мы получаем из пищи (животной и растительной). Животные жиры - ϶ᴛᴏ смесь насыщенных (40-60%) и ненасыщенных (30-50%) жирных кислот. Растительные жиры наиболее богаты (75-90%) ненасыщенными жирными кислотами и наиболее полезны для нашего организма.

Основная масса жиров используется для энергетического обмена, расщепляясь специальными ферментами – липазами и фосфолипазами . В результате получаются жирные кислоты и глицерин, которые в дальнейшем используются в реакциях гликолиза и цикла Кребса.С точки зрения образования молекул АТФ - жиры составляют основу энергетического запаса животных и человека.

Эукариотическая клетка получает жиры с пищей, хотя сама может синтезировать большинство жирных кислот (за исключением двух незаменимых линолевой и линоленовой) . Синтез начинается в цитоплазме клеток с помощью сложного комплекса ферментов и заканчивается в митохондриях или гладком эндоплазматическом ретикулуме.

Исходным продуктом для синтеза большинства липидов (жиров, стероидов, фосфолипидов) служит ʼʼуниверсальнаяʼʼ молекула – ацетил-Коэнзим А (активированная уксусная кислота), являющаяся промежуточным продуктом большинства реакций катаболизма в клетке.

Жиры есть в любой клетке, но особенно много их в специальных жировых клетках – адипоцитах , образующих жировую ткань. Контролируется жировой обмен в организме специальным гормонами гипофиза, а также инсулином и адреналином.

Углеводы (моносахариды, дисахариды, полисахариды) являются важнейшими соединœениями для реакций энергетического обмена. В результате распада углеводов клетка получает большую часть энергии и промежуточные соединœения для синтеза других органических соединœений (белков, жиров, нуклеиновых кислот).

Основную массу сахаров клетка и организм получает извне – из пищи, но может синтезировать глюкозу и гликоген из неуглеводных соединœений. Субстратами для разного вида углеводного синтеза выступают молекулы молочной кислоты (лактат) и пировиноградной кислоты (пируват), аминокислоты и глицерин. Эти реакции идут в цитоплазме при участии целого комплекса ферментов – глюкозо-фосфотаз. Для всœех реакций синтеза требуется энергия – синтез 1 молекулы глюкозы требует 6 молекул АТФ!

Основной объём собственного синтеза глюкозы протекает в клетках печени и почек, но не идет в сердце, мозге и мышцах (там нет необходимых ферментов). По этой причине нарушения углеводного обмена в первую очередь сказываются на работе этих органов. Углеводный обмен контролируется группой гормонов: гормонами гипофиза, глюкокортикостероидными гормонами надпочечников, инсулином и глюкагоном поджелудочной желœезы. Нарушения гормонального баланса углеводного обмена приводит к развитию диабета.

Мы кратко рассмотрели основные части пластического обмена. Можно сделать ряд общих выводов:

Синтез липидов и углеводов в клетке - понятие и виды. Классификация и особенности категории "Синтез липидов и углеводов в клетке" 2017, 2018.

Реакции биосинтеза липидов могут идти в гладкой эндоплазматической сети клеток всех органов. Субстратом для синтеза жиров de novo является глюкоза .

Как известно, попадая в клетку, глюкоза превращается в гликоген, пентозы и окисляется до пировиноградной кислоты. При высоком поступлении глюкоза используется для синтеза гликогена, но этот вариант ограничивается объемом клетки. Поэтому глюкоза "проваливается" в гликолиз и превращается в пируват либо напрямую, либо через пентозофосфатный шунт. Во втором случае образуется НАДФН, который понадобится впоследствии для синтеза жирных кислот.

Пируват переходит в митохондрии, декарбоксилируется в ацетил-SКоА и вступает в ЦТК . Однако в состоянии покоя , при отдыхе , при наличии избыточного количества энергии в клетке реакции ЦТК (в частности, изоцитратдегидрогеназная реакция) блокируются избытком АТФ и НАДН .

Общая схема биосинтеза триацилглицеролов и холестерола из глюкозы

Оксалоацетат, также образуемый из цитрата, восстанавливается малатдегидрогеназой до яблочной кислоты и возвращается в митохондрии

  • посредством малат-аспартатного челночного механизма (на рисунке не показан),
  • после декарбоксилирования малата до пирувата НАДФ-зависимым малик-ферментом . Образованный НАДФН будет использован при синтезе жирных кислот или холестерина.

Липиды имеют очень большое значение в метаболизме клетки. Все липиды – это органические водонерастворимые соединения, присутствующие во всех живых клетках. По своим функциям липиды разделяются на три группы:

- структурные и рецепторные липиды клеточных мембран

- энергетическое «депо» клеток и организмов

- витамины и гормоны «липидной» группы

Основу липидов составляют жирные кислоты (насыщенные и ненасыщенные) и органический спирт – глицерол. Основную массу жирных кислот мы получаем из пищи (животной и растительной). Животные жиры – это смесь насыщенных (40-60%) и ненасыщенных (30-50%) жирных кислот. Растительные жиры наиболее богаты (75-90%) ненасыщенными жирными кислотами и наиболее полезны для нашего организма.

Основная масса жиров используется для энергетического обмена, расщепляясь специальными ферментами – липазами и фосфолипазами . В результате получаются жирные кислоты и глицерин, которые в дальнейшем используются в реакциях гликолиза и цикла Кребса.С точки зрения образования молекул АТФ - жиры составляют основу энергетического запаса животных и человека.

Эукариотическая клетка получает жиры с пищей, хотя сама может синтезировать большинство жирных кислот (за исключением двух незаменимых линолевой и линоленовой) . Синтез начинается в цитоплазме клеток с помощью сложного комплекса ферментов и заканчивается в митохондриях или гладком эндоплазматическом ретикулуме.

Исходным продуктом для синтеза большинства липидов (жиров, стероидов, фосфолипидов) служит «универсальная» молекула – ацетил-Коэнзим А (активированная уксусная кислота), являющаяся промежуточным продуктом большинства реакций катаболизма в клетке.

Жиры есть в любой клетке, но особенно много их в специальных жировых клетках – адипоцитах , образующих жировую ткань. Контролируется жировой обмен в организме специальным гормонами гипофиза, а также инсулином и адреналином.

Углеводы (моносахариды, дисахариды, полисахариды) являются важнейшими соединениями для реакций энергетического обмена. В результате распада углеводов клетка получает большую часть энергии и промежуточные соединения для синтеза других органических соединений (белков, жиров, нуклеиновых кислот).

Основную массу сахаров клетка и организм получает извне – из пищи, но может синтезировать глюкозу и гликоген из неуглеводных соединений. Субстратами для разного вида углеводного синтеза выступают молекулы молочной кислоты (лактат) и пировиноградной кислоты (пируват), аминокислоты и глицерин. Эти реакции идут в цитоплазме при участии целого комплекса ферментов – глюкозо-фосфотаз. Для всех реакций синтеза требуется энергия – синтез 1 молекулы глюкозы требует 6 молекул АТФ!

Основной объем собственного синтеза глюкозы протекает в клетках печени и почек, но не идет в сердце, мозге и мышцах (там нет необходимых ферментов). Поэтому нарушения углеводного обмена в первую очередь сказываются на работе этих органов. Углеводный обмен контролируется группой гормонов: гормонами гипофиза, глюкокортикостероидными гормонами надпочечников, инсулином и глюкагоном поджелудочной железы. Нарушения гормонального баланса углеводного обмена приводит к развитию диабета.

Мы кратко рассмотрели основные части пластического обмена. Можно сделать ряд общих выводов: