Химическая формула гидроксиапатита. Физические свойства кристаллов гидроксиапатита (ГА)

В последнее время очень много говорят об уникальном наполнителе в филлерах –гидроксиапатите кальция. Столкнувшись с непонятным термином, многие пациенты предпочитают обходить его стороной, не пытаясь вникнуть в суть. А ведь этот препарат пророчат в лидеры среди филлерных наполнителей.

Гидроксиапатит кальция – это неорганический компонент, присутствующий в нашем организме и являющийся основным компонентом нашей костной ткани. Он входит в состав костей, в клеточный и бесклеточный цемент и эмаль зубов. Выделяют его из кораллов рода Porites, которые добывают в море.

Совершенно безопасен для человека и инертен к его тканям. По этой причине получил широкое применение в медицине: стоматологии, челюстно-лицевой хирургии, ортопедии. В косметологии используется как наполнитель в филлерах для восполнения утраченных объемов.

Гидроксиапатит кальция в биологических тканях организован в кристаллические структуры. Используют его в микросферах в виде белых кристалликов. Как утверждают производители, гидроксиапатит кальция стимулирует синтез коллагена в коже. Спустя некоторое время гидроксиапатит кальция полностью выводится из организма, а улучшение кожных характеристик продолжается.

Зачем используют гидроксиапатит кальция?

Принято считать, что именно морщины являются первым признаком старения кожи, но это не совсем так. Морщины действительно считаются серьезным признаком увядания кожи, но существует более явственный признак, делающий кожу по-настоящему возрастной. Это утраченные объемы. Что это значит? Это значит, что по мере старения, кожа теряет упругость и попросту «сползает» вниз.

В молодости плотность кожи концентрируется в верхней части лица в области скул. Она выглядит упругой и подтянутой. С годами кожа теряет былую упругость и эластичность, и весь объем перемещаться с верхней части лица в нижнюю ее часть в область подбородка. Этот процесс называется деформационным птозом. Почему происходит деформация лица? Существует несколько факторов, способствующих этому процессу:

  • гравитация;
  • разрушение коллагеновых и эластических волокон;
  • уменьшение синтеза гиалуроновой кислоты;
  • сокращение фибробластов в соединительной ткани.

В результате кожа становится дряблой, неэластичной, с плохим тургором, и «поплывшим» овалом лица. И самое главное лицо становится старым и усталым, а его выражение вечно скорбным и печальным. Выходит, что устранение только морщин или только носогубных складок не даст омоложение лица в той мере, в какой оно действительно считается молодым: с объемом, хорошим тургором и упругостью тканей.

Современным женщинам несказанно повезло. Теперь можно восполнить кожные объемы, не прибегая к радикальным мерам былых времен. И здесь главенствующая роль отводиться гидроксиапатиту кальция. В основном филлеры на основе гидроксиапатита кальция применяются для восполнения утраченных объемов. В этом случае им нет равных. Но в отличие от филлеров на основе гиалуроновой кислоты, они не способствуют гидратации кожи и не восстанавливают обменные процессы в ней.

Преимущество филлеров на основе гидроксиапатита кальция

Филлеры на основе гидроксиапатита кальция имеют свои преимущества. На данный момент это востребованный компонент в филлерах, а популярность процедуры на его основе растет с каждым днем. Какие это преимущества?

Во-первых, гидроксиапатит кальция – это биодеградируемый препарат. Это значит, что он по истечению срока действия выводится из организма.

Во-вторых, гидроксиапатит кальция входит в состав нашего организма. То есть для организма он не является «чужаком», который может вызвать отторжение препарата или аллергическую реакцию. Он полностью биосовместим с нашими тканями. Хотя риск возникновения аллергических реакций все же существует, поведение организма иной раз непредсказуемо, но этот риск минимален.

В-третьих, он запускает синтез эндогенного коллагена.


В-четвертых, филлеры с гидроксиапатитом кальция имеют более продолжительный эффект. По сравнению с филлерами гиалуроновой килоты, срок действия гидроксиапатита кальция вдвое больше.

Механизм действия гидроксиапатита кальция

Как было сказано выше, гидроксиапатит кальция вводится в организм в виде микросфер. Наряду с ним вводится и гель-носитель. После введения препарата в кожу, гель-носитель моментально разглаживает морщины. Морщина – это углубленная борозда на коже.

Когда вводят филлер, то морщина приподнимается за счет геля-носителя, который заполняет полость под ней. Желеобразная структура геля не позволяет морщине вернуться в ее исходное положение.

Таким образом, морщинка разглаживается, а кожа вокруг нее становится упругой. Спустя некоторое время, макрофаги (клетки организма, пожирающие бактерии, чужеродные для организма частицы и токсины) поглощают гель-носитель. Остаются микросферы гидроксиапатита кальция, которые формируют новый коллаген. Коллаген в свою очередь формируют новый кожный матрикс, который обволакивает микросферы.

Так им образом, образуется новая структура из соединительной ткани, которая действует почти два года. Образование новой соединительной структуры дает хороший долгий эффект от процедуры.

Что могут исправить филлеры с гидроксиапатитом кальция

Спектр применения филлеров достаточно широк. С их помощью:

  • восполняют утраченные объемы (на скулах, подбородке, щеках);
  • заполняют носогубные складки;
  • устраняют морщины марионетки в области рта;
  • корректируют овал лица;
  • позволяют произвести коррекцию кистей рук.

Побочные эффекты и осложнения

Сразу отметим, что филлеры на основе гидроксиапатита кальция являются совершенно безопасными. Трехлетние исследования полностью подтвердили их надежность. Противопоказаний практически нет, кроме, индивидуальной непереносимости к препарату. Аллергические реакции чаще всего развиваются у аллергиков.

Перед процедурой следует обязательно провести кожные тесты на предмет выявления аллергии, так как иной раз сами пациенты не всегда догадывается о наличие у них подобной непереносимости.


Побочные эффекты совсем незначительные и проявляются классическим образом:

  • отеки;
  • микрогематомы в местах проколов;
  • синяки.

В течение нескольких дней все побочные эффекты полностью исчезают сами собой. С осложнениями все не так просто, сами по себе они не исчезают. Для их устранения иной раз прибегают к медицинскому вмешательству. Чаще всего осложнения говорят о низкой профессиональной подготовке врача-косметолога. Какие осложнения могут быть?

  • в месте введения на лице могут образоваться белые полосы. Обычно такое случается из-за недостаточно глубокого введения филлера;
  • введение препарата в местах непредназначенных для этого вида филлеров (например, губы, слезная борозда) В результате этого могут возникнуть комки на кожи, ее неровности и даже развитие асимметрии;
  • проступание геля под кожей (эффект Тиндаля). Также происходит в результате неглубокого введения препарата, или не в тот слой кожи;
  • развитие на лице бактериальной инфекции в случае грубейших нарушений мер септики и антисептики;
  • образование сгустков геля в местах введения препарата и формирование гранулем.

Профессионализм и мастерство врача-косметолога заключается в соблюдении точной технике инъекций. Они способны минимизировать побочные эффекты и осложнения.

Гидроксиапатит – неорганический минерал, являющийся главным компонентом зубной эмали и костной ткани человека.

Керамика, изготовленная на основе гидроксиапатита, связывается со здоровой костной тканью человека и не вызывает отторжения. Такое свойство минерала позволяет активно использовать его для восстановления поврежденных костей. Кроме того, биологически активный слой препарата с гидроксиапатитом используют для улучшения врастания имплантатов в стоматологии.

Фармакологическое действие

Препарат на основе гидроксиапатита кальция стимулирует образование костной ткани, не вызывает реакции отторжения и характеризуется биологической совместимостью с тканями человека. После введения препарата в костные полости, он не затвердевает и не рассасывается, а с течением времени замещается на полноценную и здоровую костную ткань.

Показания к применению

Гидроксиапатит кальция используется в качестве одного из составляющих пломбировочных паст, которые применяются в следующих случаях:

Заполнение корневых каналов при терапии воспалительных заболеваний зуба (пульпит, периодонтит);

Терапия пародонтита (воспаление костной ткани, окружающей зубной корень);

Лечение костных дефектов посредством аплотрансплантантов (донорской кости);

Восстановление костной ткани после удаления кисты;

Восстановление зуба после резекции верхушки его корня;

Заполнение внутрикостных полостей различного происхождения и т.д.

Инструкция по применению (способ и дозировка)

Порошок гидроксиапатита кальция замешивают на этиленгликоле, масляном растворе ацетата ретинола или на стерильном физиологическом растворе до образования пастоподобной смеси. Данная манипуляция должна осуществляться с соблюдением всех правил асептитки.

Пасту из гидроксиапатита кальция, предназначенную для пломбирования корневых каналов зуба, готовят на основе эвгенола. В случае несовместимости пломбировочных материалов с эвгенолом, вместо эвгенола необходимо использовать физиологический раствор. В пасту может быть добавлена 50% окись цинка, позволяющая получить более точное рентгеноконтрастное исследование. Все последующие терапевтические манипуляции после внесения пасты из гидроксиапатита традиционные.

При лечении пародонтита, костный карман заполняют стерильными гранулами гидроксиапатита до уровня здоровой сохранившейся кости, затем рану ушивают. Послеоперационное ведение заболевания остается традиционным.

Заполнение костных полостей гранулами гидроксиапатита при резекции верхушки корня зуба или удалении омертвевшей костной ткани осуществляется так же, как и при использовании других, применяемых для данной цели, материалов.

Используют гидроксиапатит и при проведении хирургических операций, затрагивающих костную пластику, в частности при работе с трансплантантами. Так, чтобы усилить процесс замещения пересаженной костной ткани собственной костной тканью пациента, для предупреждения быстрого рассасывания трансплантанта, а также для снижения воспалительной реакции, препаратом на основе рассматриваемого минерала заполняют неровности или места неплотного прилегания между трансплантантом и костной тканью пациента.

Готовят препарат для хирургических операций следующим образом: стерильные гранулы или порошок гидроскиапатита необходимо увлажнять с помощью стерильного физиологического раствора до тех пор, пока не получится смесь, напоминающая по консистенции густую пасту. Стерилизуется препарат в сушильном шкафу в течение 10-15 минут при температуре в 150 °С. С помощью приготовленной пасты заполняют места неплотного прилегания трансплантанта к собственной костной ткани пациента. После чего рана послойно ушивается. Дальнейшая послеоперационная терапия остается традиционной.

Применение в косметологии

Не обошли гидроксиапатит вниманием и косметологи. На его основе создан инновационный инъекционный препарат, использующийся для коррекции морщин. В отличие от прочих косметологических препаратов, обеспечивающих коррекцию морщин на 4-8 месяцев, инъекции на основе гидроксиапатита помогают добиться более длительного эффекта от коррекции, вплоть до 13-15 месяцев и более.

Средство абсолютно биологически совместимостимо с тканями человеческого организма.

Используется при проведении следующих косметологических процедур:

Коррекция носогубных складок;

Коррекция выраженных и умеренных складок лица;

Коррекция и подтяжка овала лица;

Увеличение щек и подбородка.

Статья на конкурс «био/мол/текст»: Заболевания, связанные с повышенной скоростью деградации костной ткани у пожилых людей, все острее ощущаются населением. Во многом это связано с увеличением продолжительности жизни вообще и состариванием так называемого «золотого миллиарда». Новые материалы на основе фосфатов кальция, пригодные для имплантации больным остеопорозом, могут частично решить эту проблему.

Современная наука ставит одной из главных своих целей продление длительности человеческой жизни. Разрабатываются новые методы лечения заболеваний, облегчается жизнь стариков, многие болезни, считавшиеся неизлечимыми ранее, практически полностью побеждены человечеством. Однако некоторые возрастные изменения заложены в организм генетически, и обычными методами с ними бороться практически невозможно.

Заболевания костной ткани занимают одну из первых строчек в рейтинге наиболее часто встречающихся у пожилых людей проблем. С возрастом нарастает потеря массы кости. Особенно от этого страдают женщины - из-за более активного вымывания из организма катионов кальция, служащего основой нашего скелета. Потеря массы костной ткани может достигать 40% у женщин старше 70 лет !

Это заболевание называется остеопорозом . Пораженные им кости становятся хрупкими, с трудом справляясь с возложенной на них нагрузкой. В случае перелома срастаться такая кость будет значительно дольше, чем здоровая. Как уже упоминалось выше, главной причиной таких изменений является постепенное вымывание кальция из организма. На протяжении всей жизни у нас в организме происходят два равновесных процесса: непрерывное образование новой костной ткани и резорбция (растворение) старой. К старости равновесие смещается в сторону резорбции, и новая ткань просто не успевает занять место растворенной. А избыток катионов кальция, являющегося основным продуктом этого процесса, выводится из организма естественным путем.

Что же представляет собой человеческая кость? На рисунке 1 схематически изображено строение кости человека. Основа состоит из композита (материала, составленного из других материалов и обладающего свойствами, отличными от свойств «родителей»), представляющего собой кристаллы нестехиометрического гидроксилапатита с химической формулой:

Ca 10−x−y/2 (HPO 4) x (CO 3) y (PO 4) 6−x−y (OH) 2−x ,

Таким образом, полная замена кости на искусственный материал нежелательна. Наиболее предпочтительным путем к регенерации костной ткани на сегодняшний день стала замена поврежденной части ткани на биоактивный протез, который срастется с окружающими тканями, затем ускорит естественную регенерацию и постепенно растворится без следа, оставив на костном дефекте новую ткань.

Рисунок 2. Индивидуальный протез фрагмента нижней челюсти для больного саркомой нижней челюсти. Протез изготовлен из полимера и гидроксилапатита.

Традиционно в ортопедии для этих целей применяется гидроксилапатит . Стехиометрически гидроксилапатит (далее для краткости мы будем называть его ГАП) наиболее приближен по составу к минеральной составляющей кости (по сравнению с другими фосфатами кальция). Его формула:

Что собой представляет гидроксилапатит?

Долгое время считалось, что гидроксилапатит Ca 10 (PO 4) 6 (OH) 2 - идеальный в плане биосовместимости материал для восстановления поврежденных костей и зубов. Первая документированная попытка использовать ГАП в качестве остеозамещающего материала относится к 1920-м годам. Однако успешное применение ГАП в указанных целях совершилось только через 60 лет. Гидроксилапатит прекрасно совместим с мускульной тканью и кожным покровом; после имплантации он может напрямую срастаться с костной тканью в организме. Высокая биосовместимость гидроксилапатита объясняется кристаллохимическим подобием искусственного материала костному «минералу» позвоночных.

Название минерала происходит от греческого «апатао» - обманываю, поскольку красиво окрашенные природные разновидности апатитов часто путали с бериллами и турмалином. Несмотря на очень широкий спектр окраски природных апатитов, вызванных различными примесями, низкая твердость (он является эталоном значения 5 по 10-балльной шкале Мооса) не позволяет рассматривать его как полудрагоценный поделочный камень.

Известно, что костный минерал содержит в заметном количестве (~8% по массе) карбонат-ионы; существует также природный минерал сходного состава - даллит. Считается, что карбонат-ионы могут занимать две разные позиции в структуре ГАП, замещая гидроксил и/или фосфат-ионы с образованием карбонатгидроксилапатита (КГАП) А- и Б-типа, соответственно. Апатит биологического происхождения относится к Б-типу. Замещение фосфат-ионов карбонат-ионами приводит к уменьшению размеров кристаллов и степени кристалличности ГАП, а это сильно затрудняет исследование природных биоминералов. Увеличение доли карбонат-ионов в составе гидроксилапатита вызывает закономерные изменения в равновесной форме кристалла. Игольчатые кристаллы «сплющиваются» до пластин, которые очень похожи на кристаллиты существующего в организме апатита . Таким образом, внесением в синтезируемый минерал небольшой доли карбонат-ионов можно получить материал, аналогичный биогенному и по химическому составу, и геометрически.

Важной характеристикой ГАП является стехиометрия его состава, которую принято выражать соотношением Ca/P. Переменный состав вызван тем, что при синтезе ГАП из раствора нельзя защититься от ионов H 3 O + и HPO 4 2 − , которые могут замещать соответственно ионы Са 2+ и РО 4 3 − в кристаллической структуре гидроксилапатита.

Как используется гидроксилапатит?

Существуют различные методы синтеза гидроксилапатита. Их можно условно разделить на высоко- и низкотемпературные. Высокотемпературные методы не представляют для нас большого интереса, так как полученные таким образом материалы практически не биоактивны. Низкотемпературные методы можно разделить на две большие группы: гидролиз (в том числе так называемые гидротермальные методы синтеза) и осаждение из раствора . Интересен так же комбинированный метод так называемого золь–гель синтеза . В нем сухой остаток геля подвергается разложению при относительно невысокой температуре 400–700 °С (по сравнению с высокотемпературным синтезом). Материалы, полученные таким образом, представляют собой твердую, пористую керамику, по химическому составу и физическим свойствам напоминающую минерал кости.

Как реагирует организм на кальций-фосфатную керамику?

Биоактивность - комплексная характеристика совместимых с организмом материалов, учитывающая, помимо воздействия на биологические процессы роста и дифференциации клеток, также:

  • скорость растворения материала в средах, создаваемых определенными группами клеток (биорезорбируемость);
  • скорость осаждения материала из межтканевой жидкости на поверхность материала.

Среди требований, которые предъявляются к биоактивным материалам, применяемым в медицинской практике для восстановления целостности костной ткани, на первом месте стоят относительно высокая скорость растворения (порядка десятков мкм в год) - так называемая биорезорбируемость . Активную роль в биохимических реакциях, протекающих на границе раздела кость/имплантат с участием клеток специфических для процесса остеосинтеза, играет поверхность. Говоря о скорости резорбции материала, находящегося в межтканевой жидкости, принято сравнивать новые материалы с уже используемыми в медицине - керамикой на основе гидроксилапатита или β-трикальцийфосфата. Крупнокристаллическая керамика на основе ГАП резорбируется медленно, так что включения искусственного материала можно обнаружить в кости и через много лет. Керамика, полученная с использованием β-Ca 3 (PO 4) 2 , растворяется столь быстро, что растущая кость не успевает заполнить образующиеся полости. Скорость растворения материала зависит от множества факторов: площади поверхности, строения, состава, дефектности материала. Эти характеристики определяют отклик организма на инородный имплантат. Биоактивные материалы характеризуются быстрым срастанием с костной тканью через образование промежуточного слоя ГАП, образующегося двумя возможными путями:

  1. Растворение фосфата кальция - осаждение гидроксилапатита.
  2. Осаждение ГАП из пересыщенного раствора в тканевой жидкости.

Важная процедура оценки биоактивности подразумевает тестирование in vivo . Это дорого и долго, а также сопряжено с риском. Однако ведется активная разработка методик, позволяющих уже на раннем этапе доклинических испытаний ранжировать материалы по степени биоактивности в ходе относительно простых экспериментов in vitro , моделирующих процессы в организме человека - растворение материала и осаждение ГАП на поверхности материала из растворов, подобных жидкостям организма.

Исследование биоактивности материалов проводят с использованием раствора, имитирующего ионный состав межтканевой жидкости человека. Компактные образцы исследуемого материала помещают в раствор на несколько суток при 37 °С. Процесс осаждения карбонатгидроксилапатита из модельного раствора на поверхность материала контролируют методами рентгенофазового анализа, ИК-спектроскопии и растровой электронной микроскопии.

Существует необходимость регулировать биорезорбируемость искусственных материалов, в зависимости от их назначения. Такая возможность существует благодаря различию свойств материалов с разным составом. Чтобы сделать образец более резорбируемым, нужно увеличить долю карбонат- и силикат-ионов в кристаллической решетке материала.

Рисунок 3. Ажурный слой частично резорбированной керамики. Снимок со сканирующего электронного микроскопа. Здесь изображен фрагмент материала, подвергнутый растворению в модельном растворе in vitro . Справа можно увидеть, каким был материал до начала резорбции.

Наилучшую биоактивность в таких исследованиях проявляет кремнийсодержащий материал. На его поверхности образуются силанольные (-SiOH) группы, активно участвуя в минерализации внешнего слоя имплантата. Такой материал интенсивно обменивается ионами с раствором: силанольные группы прочно связывают ионы кальция, способствуя формированию слоя аморфного фосфата кальция на поверхности, расслоение и кристаллизация которого приводит к образованию ажурного слоя, состоящего из частиц ГАП размером ~10 нм (рис. 3). Различия в толщине такого слоя могут служить мерой биоактивности материала: чем он толще, тем проще кость будет встраивать этот материал в свою структуру.

Еще одним из важнейших свойств современных имплантационных материалов является остеоиндуктивность - способность поддерживать жизнедеятельность остеобластов и стимулировать эктопическое (вне кости) образование костной ткани de novo . Это важнейшее свойство для искусственных имплантов. Дело в том, что для инициации костеобразования вокруг импланта необходимо микроокружение частицами живой кости. Вновь образующаяся кость постепенно срастается с окружающими имплантированными частицами, «перескакивая» с одной на другую.

Считается, что наиболее активным с точки зрения остеосинтеза является аморфная модификация гидроксилапатита. Однако в достаточной степени кристалличный ГАП с размерами кристаллитов, приближающимися к размерам кристалла в костной ткани (20–40 нм 3), может показывать результаты на порядок выше аморфных цементов, использующихся в настоящее время .

Биоинертные материалы никак не влияют на процесс остеосинтеза. На поверхности изготовленных из них имплантатов происходит образование фиброзной ткани, препятствующей образованию связи имплантата с костью. Существует значительная вероятность отторжения таких материалов организмом, часто сопровождающегося воспалительными процессами. Тем не менее, полностью отказаться от этих материалов пока нельзя, поскольку они дешевы и легки в обработке. Основные проблемы, которые решаются при проектировании имплантатов из биоинертных материалов, - приближение упругих характеристик имплантата к характеристикам кости, а также снижение скорости коррозионных процессов.

В отличие от биоинертных синтетических материалов на основе полимеров и металлов, керамика на основе фосфатов кальция биосовместима и биоактивна, а значит, является наиболее перспективным материалом для костных имплантатов. Главным ее недостатком является хрупкость. Пока что наилучшим выходом является применение композитов из покрытых кальцийфосфатной керамикой металлов или полимеров (рис. 4). Они хорошо обеспечивают интеграцию материала в костную ткань, не позволяя образовываться фиброзной ткани вокруг биоинертного металла. Со временем протез очень прочно срастется с окружающей костью, которая заменит слой ГАПа. Процент отказа таких протезов значительно ниже, чем у металлических и пластиковых аналогов.

Рисунок 4. Покрытие из биоактивной керамики на протезе тазобедренного сустава. а - Пористая структура керамического покрытия. б - Рентгеновский снимок протеза, имплантированного на место тазоберенного сустава. Сам протез изготовлен из титана и полимеров.

Как придать ГАПу новые свойства?

Не все свойства, необходимые для протезирования, заложены в гидроксилапатит природой. Однако какие-то терапевтические эффекты к материалам можно добавить, усложняя состав композита дополнительными веществами. Однако это не очень удобно, так как усложнит клинические испытания, да и разрабатывать такой материал значительно труднее. Но можно добиться прогресса и получить уникальные свойства, незначительно модифицируя состав и вводя в решетку гидроксилапатита примеси других катионов и анионов. Изменяя состав керамики, можно варьировать ее прочность, размер и форму кристаллитов, скорость растворения и множество других параметров.

Модифицировать кальций-фосфатную керамику можно введением множества компонентов. Возможности для выбора такого модификатора (легирующего компонента) довольно широки: в зависимости от размеров замещаемого иона можно менять состав как на доли, так и на десятки процентов. Например, малые концентрации ионов кремния активируют регенерацию костной ткани, играя роль антигена для соответствующих клеток.

Интересны, например, биологические свойства катионов лантаноидов . Применение ионов лантаноидов в пероральных препаратах ограничено их низкой способностью проходить сквозь стенки желудка и кишечника. Для улучшения доступности катионов лантаноидов можно использовать липофильные оболочки комплексов. Вещества, способные проникать сквозь клеточные мембраны, называются ионофорами . (Подробнее о них можно прочитать в статье «Неизвестные пептиды: „теневая“ система биорегуляции » .) Такая оболочка позволит им проникать сквозь мембрану клетки. Этот метод доставки ионов в остеобласты может стать принципиально новым подходом к лечению целого ряда заболеваний кости.

Благодаря высокому сродству к фосфатам лантаноиды прочно связываются в структуре минералов, составляющих основу костной ткани, не нарушая при этом их структуру. Лантаноиды способны даже замещать кальций в костях, параллельно подавляя развитие клеток, отвечающих за разрыв и резорбцию костной ткани. Эта способность «подражать» функциям ионов кальция позволяет рассматривать лантаноиды в качестве компонента для терапии заболеваний кости.

Частичный обмен катионов кальция на катионы лантаноидов открывает широкие перспективы для целого ряда различных материалов на основе фосфатов кальция. С помощью лантаноидов можно влиять на физические свойства получаемой керамики, регулировать скорость резорбции и даже использовать этот материал как препарат для лечения остеопороза.

На практике ГАП используют в виде цемента или пористых вкладок для заполнения трещин, каверн и других дефектов в ортопедии и челюстно-лицевой хирургии. В виде пленки его наносят на протезы из других материалов (чаще всего металлических или полимерных) для снижения риска отторжения и лучшей фиксации за счет образования новых тканей вокруг протеза. Как правило, это протезы тазобедренного сустава и различные зубные протезы.

Разумеется, искусственно синтезированный гидроксилапатит далек от идеала, и в качестве материала для имплантации при создании полноценных протезов крупных костей или суставов его пока использовать нельзя. Но использование его замечательных свойств, таких как сравнительно простое регулирование состава и морфологии кристаллитов, биоактивность и способность ускорять естественную регенерацию, позволяет делать на его основе препараты для исправления и профилактики костных дефектов уже сейчас. А это значит, что в обозримом будущем мы сможем значительно упростить лечение остеопороза, ускорить излечение переломов, а, возможно, даже и возвращать утраченные конечности с помощью искусственных костей.

Литература

  1. Larry L. Hench. (2005). Bioceramics . Journal of the American Ceramic Society . 81 , 1705-1728;
  2. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. (2000). Достижения в области керамических материалов. «Рос. Хим. Журн.» 6 , 32–46;
  3. Larry L. Hench. (2006). The story of Bioglass® . J Mater Sci: Mater Med . 17 , 967-978;
  4. Дорожкин С.В. и Агатопоулус С. (2002). Биоматериалы: Обзор рынка. «Химия и жизнь» . 2 , 8;
  5. E. D. Eanes, A. W. Hailer. (1998). The Effect of Fluoride on the Size and Morphology of Apatite Crystals Grown from Physiologic Solutions . Calcif Tissue Int . 63 , 250-257;
  6. Qinghong Hu, Zhou Tan, Yukan Liu, Jinhui Tao, Yurong Cai, et. al.. (2007). Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells . J. Mater. Chem. . 17 , 4690;
  7. Cheri A. Barta, Kristina Sachs-Barrable, Jessica Jia, Katherine H. Thompson, Kishor M. Wasan, Chris Orvig. (2007). Lanthanide containing compounds for therapeutic care in bone resorption disorders . Dalton Trans. . 5019;
  8. Неизвестные пептиды: «теневая» система биорегуляции ;
  9. G. Renaudin, P. Laquerrière, Y. Filinchuk, E. Jallot, J. M. Nedelec. (2008). Structural characterization of sol–gel derived Sr-substituted calcium phosphates with anti-osteoporotic and anti-inflammatory properties . J. Mater. Chem. . 18 , 3593.

/ минерал Гидроксилапатит

Гидроксилапатит - минерал, фосфат кальция из группы апатита надгруппы апатита. Гидроксильный аналог фторапатита и хлорапатита, фосфатный аналог джонбаумита. Гексагональной полиморф клиногидроксилапатита.
Растворим в HCl и HNO3.
Гидроксилапатит как биоминерал
До 50 вес.% костей состоят из специфической формы гидроксиапатита (известен как костная ткань). Гидроксиапатит является основным минеральным компонентом зубной эмали и дентина (нестехиометрический гидроксилапатит с кристаллами в форме пластин размерами 40х20х5 нм и осью "с" кристаллической структуры, лежащей в плоскости кристалла). Кристаллы гидроксилапатита находятся в небольших кальцификатах живых организмов (в шишковидной железе и других органах). Также входит в состав патогенных биоминералов (зубных, слюнных, почечных камней и др.).
Актуально создание биоматериалов на основе гидроксилапатита для замены поврежденной костной ткани и тд. Он часто используется в качестве наполнителя вместо ампутированной кости или в качестве покрытия для содействия костного врастания в протез имплантатов (на многие другие фазы, пусть и с аналогичным или даже идентичным химический составом, организм реагирует совсем по-другому). Показано, что не только химический состав, но и морфология синтетических кристаллов гидроксилапатита является важной характеристикой, определяющей отклик организма на чужеродный материал (Puleo D.A., Nanci A., 1999).

рассказать об ошибке в описании

Свойства Минерала

Цвет белый, зеленый, сине-зеленый, голубой, фиолетовый, редко красный
Цвет черты белый
Происхождение названия Назван как гидроксильный конечный член группы апатита, и от греческого apatao - вводящий в заблуждение
IMA статус действителен, описан впервые до 1959 (до IMA)
Химическая формула Ca5(PO4)3(OH)
Блеск стеклянный
жирный
Прозрачность прозрачный
полупрозрачный
Спайность весьма несовершенная по {0001}
весьма несовершенная по {1010}
Излом раковистый
неровный
Твердость 5
Термические свойства Под п. тр. с трудом сплавляется по краям
Strunz (8-ое издание) 7/B.39-30
Hey"s CIM Ref. 19.4.2
Dana (8-ое издание) 41.8.1.3
Молекулярный вес 502.31
Параметры ячейки a = 9.41Å, c = 6.88Å
Отношение a:c = 1: 0.731
Число формульных единиц (Z) 2
Объем элементарной ячейки V 527.59 ų
Двойникование Редко двойники срастания по {1121}
Точечная группа 6/m - Dipyramidal
Пространственная группа P63/m
Плотность (расчетная) 3.16
Плотность (измеренная) 3.14 - 3.21
Показатели преломления nω = 1.651 nε = 1.644
Максимальное двулучепреломление δ = 0.007
Тип одноосный (-)
Оптический рельеф умеренный
Форма выделения в виде призматических кристаллов и игл, реже отмечаются короткостолбчатые или таблитчатые кристаллы. Главные простые формы: (1010), (1120), (0001), (10l2}, {1011}, (1121}, (2021), (3142} и др
Классы по систематике СССР Фосфаты, арсенаты, ванадаты

Зубная эмаль – это внешняя защитная оболочка коронковой части зубов. Это самая твёрдая ткань человеческого организма, которая на 97% состоит из кристаллов гидроксиапатита. В структуре эмали также присутствует небольшое количество воды (2-3 %) и органических веществ (1-2 %).

Деминерализация эмали – это утрата из эмали зубов минералов и солей, в первую очередь солей кальция. Процесс деминерализации начинается при длительном контакте эмали с кислотами, которые выделяются живущими во рту бактериями. Постоянное употребление продуктов с высоким содержанием углеводов и плохая гигиена полости рта способствуют отложению зубного налета, в котором эти бактерии живут и размножаются. Если не удалять налет вовремя, деминерализация эмали продолжается, приводя через какое-то время к появлению меловидного пятна, а затем и к появлению кариеса.

На стадии белого пятна кариес обратим. Предпринятые вовремя меры по укреплению эмали способствуют уменьшению и даже полному исчезновению пятна. Укрепление эмали (реминерализация) - это насыщение эмали недостающими минералами, способствующее ее восстановлению и повышению устойчивости к кислотам. Оно может осуществляться как в кабинете стоматолога, так и в домашних условиях.

Показания к укреплению эмали

  • Наличие кариеса.
  • Детский возраст.
  • Беременность и период грудного вскармливания.
  • Начальная стадия кариеса (стадия белого пятна).
  • Повышенная чувствительность зубов.
  • Периоды до и после отбеливания зубов.
  • Наличие установленных ортодонтических конструкций (брекет-систем).

Способы укрепления эмали


Другой эффективный способ укрепления эмали, - реминерализация с помощью медицинского нано-гидроксиапатита (nano"mHAP"), идентичного по составу главному компоненту зубной эмали и дентина. Медицинский нано-гидроксиапатит используется в качестве компонента зубных паст, регулярное применение которых, способствует восстановлению и укреплению эмали. Встраиваясь в кристаллическую решетку зубной эмали, медицинский гидроксиапатит запечатывает микротрещины, снижает чувствительность зубов и устраняет кариес на стадии белого пятна. Этот уникальный компонент содержится в пастах Apadent , Apagard , Biorepair , Miradent и др.


Укрепить эмаль и предотвратить кариес можно также с помощью средств, содержащих аморфный кальций фосфат . Взаимодействуя со слюной и гидроксиапатитом, он образует на поверхности зубов биопленку, которая защищает эмаль от вредного воздействия кислот. Также благодаря этой пленке биодоступный кальций проникает в эмаль – происходит ее реминерализация. Аморфный кальций фосфат является главным действующим компонентом паст GC Tooth Mousse и Mi Paste Plus , которые используются как зубной крем – наносятся на поверхность эмали на несколько минут. Этот препарат нельзя применять пациентам с непереносимостью белков молока, так как аморфный кальций фосфат извлекается из казеина коровьего молока.


Новейшим способом укрепления эмали стало использование теобромина – экстракта какао-бобов. Эффективность теобромина в укреплении эмали основана на способности этого вещества стимулировать образование собственных кристаллов гидроксиапатита, в результате чего эмаль становится более кислотоустойчивой. Укрепляющие зубные пасты с теобромином выпускаются компанией Theodent и относятся к косметике класса «люкс».