Золотое сечение и числа фибоначчи в фотографии. Числа Фибоначчи: ищем секрет мироздания

Развитие человечества разграничивается определенными периодами в древнейшей и современной истории. Могут ли элементы ряда чисел Фибоначчи соответствовать хронологическим рубежам периодов в древнейшей и современной истории человечества, т. е. подчиняются ли рубежи периодов математической закономерности? Существует ли такая закономерность в других периодах: периодах мировой истории, периодах правления известных Российских государственных деятелей, и в датах современных событий, имеющих историческое значение? Цель нашей работы заключается в проведении аналогии между математикой и историей, то есть установлении некоторой связи. Для достижения данной цели необходимо было решить следующие задачи:

  • Познакомиться с числами Фибоначчи и золотым сечением, которое является самым гармоничным отношением;
  • Проверить, соответствуют ли рубежи периодов древнейшей, современной и мировой истории числам ряда Фибоначчи;
  • Рассчитать годы правления известных Российских государственных деятелей и найти их отношение;
  • Рассмотреть даты, имеющие историческое значение, во временных промежутках современной истории;
  • Проверить, являются ли полученные отношения между данными объектами известными математическими отношениями.

Объектами исследования будут являться археологические эпохи, периоды мировой истории, периоды правления известных Российских государственных деятелей, даты событий, имеющие историческое значение. Весьма полезными для нас оказались результаты исследований социолога - аналитика В. В. Дудихина, и метод поэта и переводчика А. Чернова, которые подтверждают математические закономерности чисел Фибоначчи, соответствующие хронологическим рубежам древнейшей истории человечества. Работа относится к прикладным исследованиям, ее результаты, выраженные с помощью математики, покажут связь между математикой и историей, которая подчиняется математическим законам.

Числа Фибоначчи и золотое сечение

Числовая последовательность, в которой, сумма двух соседних чисел дает значение следующего за ними является последовательностью Фибоначчи (например, 1+1=2; 2+3=5 (1,1,2,3,5,8,13,21,34,55 и т.д.)). Свойства различных членов последовательности, так называемые коэффициенты Фибоначчи, (т.е. постоянные отношения) определяются следующим образом:

  • Отношение каждого числа к последующему более и более стремится к 0,618 по увеличению порядкового номера. Отношение же каждого числа к предыдущему стремится к 1,618 (обратному к 0,618);
  • При делении каждого числа на следующее за ним через одно получаем число 0,382, наоборот - соответственно 2,618;
  • Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: ... 4,235; 2,618; 1,618; 0,618; 0,382; 0,236; упомянем также 0,5. Все они играют особую роль в природе, и в частности - техническом анализе.

Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Обратимся к числу 0,618, мы уже его встречали (коэффициент Фибоначчи). Это числовое значение золотого сечения.

Одна из пропорций чаще других встречающаяся в искусстве получила название золотое сечение - деление отрезка, при котором одна его часть во столько же раз больше другой, во сколько сама она меньше целой. Пропорциональные отношения, близкие к золотому сечению дают впечатление развитие форм, их динамики, пропорционального дополнения друг друга.

Исследования ученых

Обратимся к современным исследованиям: социолога - аналитика В.В. Дудихина, поэта и переводчика А. Чернова.

Социолог и аналитик В.В. Дудихин рассмотрел хронологию эпох, в качестве инструмента хронологии он избрал гармоническую систему числовых отношений, так называемый ряд Фибоначчи. В.В. Дудихин сопоставил числа ряда Фибоначчи и археологические эпохи. Его исследования показали, что некоторые элементы этой последовательности, действительно, соответствуют хронологическим рубежам в древнейшей истории человечества, особенно если к числам добавить наименование "тыс. лет до н. э.", или "тыс. лет тому назад", или просто "тыс. лет". Хронология и периодизация исторического развития с помощью ряда Фибоначчи разделена на 18 временных ступеней: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1 597, 2 584, что подтверждается 60% проверенных совпадений.

Так же, полезным нам окажется метод А.Чернова, в основу которого положено нахождение отношений частей одного целого, т.е. пропорциональные отношения.

Внимание Чернова привлекли рассуждения о золотом сечении и числе PI, которые восходят к Пифагору. Исследования Андрей Чернова позволили сделать заключение о том, что построение стихов древнего автора Слова о полку Игореве, состоящего из девяти песен, подчиняется математическим законам. А именно, если число стихов во всех трех частях (их 804) разделить на число стихов в первой и последней части (256), получается 3,14, т.е. число PI с точностью до третьего знака.

Вышеназванные исследования, представляют интерес, не только, в плане используемых методов, но и в плане полученных результатов. Опираясь на данные современных исследований можно предположить, что не только эти археологические эпохи, но и другие исторические периоды подчиняются математическим законам.

Связь между историческими периодами и законами математики

Проведем аналогию между рубежами исторических периодов, числами Фибоначчи и золотым сечением, основываясь на данные ученых и собственные исследования. Для этого рассмотрим некоторые рубежи исторических периодов, в хронологии с древнейшей и современной историей.

Проверим исследование социолога В.В. Дудихина рубежей исторических периодов в хронологии c древнейшей историей. Сопоставим рубежи исторических периодов с числами Фибоначчи, т.е. проведем их соответствие. Для этого рассмотрим рубежи периодов древнейшей истории:

Железный век датируется II тыс. н.э.. На Ближнем Востоке, Египте, Греции - с начала I тыс. н.э., в Африке - с I тыс. н.э.;

Бронзовый век датируется в Южной Америке с середины I тыс. н.э., в Тропической Африке с I тыс. н.э., в Европе с середины III тыс. до н.э., в Индии с конца III тыс. до н.э., в Египте с начала II тыс. до н.э., в Передней Азии с конца IV тыс. до н.э.;

Медный век (энеолит) датируется VIII - IV тыс. до н.э.;

Каменный век (палеолит) ранний датируется до 35 тыс. лет назад, поздний 35 - 13 тыс. лет назад;

Каменный век (мезолит) датируется с начала XX - VIII тыс.до н.э. поV - IV тыс. н.э.;

Каменный век (неолит) датируется VIII - III тыс. н.э.;

Если рассмотреть происхождение человека, то выделяют следующие рубежи периодов: Australopithecus anfmensis, 4 - 3,7 млн. лет назад, Australopithecus africanus, 3-2 млн. лет, Australopithecus boisei, 2,4 - 1,1 млн. лет, Homo rudolfensis, 2,5 - 1,8 млн. лет, Homo erectus, 1,8 - 400 тыс. лет, Homo neandertalensis, 220 - 27 тыс. лет Полученные результаты соответствуют числам Фибоначчи (1, 3, 8, 13, 21, 33, 233, 1597, 2584, 4181) или близки к ним.

Проведем исследование рубежей периодов мировой истории и предистории: Эпоха первобытно общинных отношений 2,5 мил. лет назад - III тыс. до н.э.; Древний мир III тыс. до н.э.- V тыс. н.э.; История средних веков V века - конец XV века; История нового времени XVI - XX в.; Современная эпоха XX - XXI в. Полученные результаты соответствуют числам Фибоначчи (3, 5, 13, 21) или близки к ним.

Проведем исследование периодов правления известных Российских государственных деятелей с 862 г. н.э.

Пересчитаем годы их правления:

Рюрик (862 - 879) - 17 лет; Василий III (1505 - 1533) - 28 лет; Иван Грозный (1533 - 1584) - 51 год; Романов М.Ф. (1613 - 1676) - 63 года; Пётр I (1682 - 1725) - 43 года; Екатерина II (1762 - 1796) - 34 года; Александр II (1855 - 1981) - 26 лет; Николай II (1894 - 1917); падение монархии Романовых 1917 до 1931 - 14 лет; Сталин И.В. (1931 -1953) - 22 года; Хрущев Н.С. (1953 - 1964) - 11 лет; Брежнев Л.И. (1964 - 1982) - 18 лет; Горбачев М.С. (1985 - 1991) - 6 лет; Ельцин Б.Н. (1991 - 1999) - 8 лет; Путин В.В. (2000 - 2008) - 8 лет.

Найдем отношения годов правления.

Если разделить годы правления Рюрика (17 лет) на годы правления Василия III (28 лет), то их отношение равно 0,607. Если разделить годы правления Василия III (28 лет) на годы правления Ивана Грозного (51 год), то их отношение равно 0,549. Если разделить годы правления Ивана Грозного (51 год) на сумму годов правления Василия III и Ивана Грозного (79 лет), то их отношение равно 0,646. Отношение годов правления Романова М.Ф. (63 года) к годам правления Петра I (43 года) равно 0,682. Отношение годов правления Екатерины II (34 года) к годам правления Романова М.Ф. (63 года) равно 0,54. Если разделить годы правления Петра I (43 года) на сумму годов правления Петра I и Екатерины II (77 лет), то их отношение равно 0,55. Отношение годов правления Сталина И.В. (22 года) к сумме годов от 1917 до 1953 (36 лет) равно 0,611 т.е. числовое значение золотого сечения с точностью до третьего знака;

Отношение годов правления Хрущева Н.С. (11 лет) к сумме годов от 1917 до 1964 (47 лет) равно 0,234. Отношения годов правления Хрущева Н.С. (11 лет) к годам правления Брежнева Л.И. (18 лет) и наоборот, равны соответственно 0,611 и 1,636. Данные отношения близки к фибоначчиевским коэффициентам (0,236; 0,618; 1,618) с точностью до третьего и второго знаков соответственно. Отношение годов правления Сталина И.В. (22 года) к сумме годов правления Сталина И.В. и Хрущева Н.С. (33 года) равно 0,666. Отношение годов правления Горбачёва М.С. (6 лет) к годам правления Хрущева Н.С. (11 лет) равно 0,545. Отношения годов правления Хрущева Н.С. (11 лет) к сумме годов правления Хрущева Н.С. и Брежнева Л.И. (29 лет) и наоборот, равно соответственно 0,379 и 0,620 т.е. фибоначчиевским коэффициентам (0,382; 0,618) с точностью до второго знака.

Рассмотрим временные промежутки, периоды правления известных Российских государственных деятелей, и даты некоторых событий в эти периоды, имеющие историческое значение.

  • Временной промежуток с 1984 по 1917 год, годы правления Николая II. Историческим событием является 1904 год - начало Русско-японской войны. Найдем отношение годов после данного события (13 лет), во временном промежутке, к годам всего временного промежутка (23 года). Отношение годов равно 0,565.
  • Временной промежуток с 1894 по 1931 год, с начала правления Николая II по начало правления Сталина И.В. Историческим событием является 1917 год - начало революции в России. Найдем отношение годов до данного события (23 года) к годам после данного события (14 лет). Отношение годов равно 1,64.
  • Временной промежуток с 1917 по 1931 год, падение монархии Романовых. Историческим событием является 1922 год - образование Союза Советских Социалистических республик. Найдем отношение годов до данного события (5 лет) к годам после данного события (9 лет). Отношение годов равно 0,556.
  • Временной промежуток с 1931 по 1953 год, годы правления Сталина И. В. Историческим событием является 1941 год - нападение Германии на СССР, Найдем отношение годов до данного события (10 лет) к годам данного временного промежутка (22 года). Отношение годов равно 0,454.
  • Временной промежуток с 1985 по 2000 год, с начала правления Горбачева М.С. по начало правления Путина В.В. Историческим событием является 1991 год - распад Союза Советских Социалистических республик. Найдем отношение годов до данного события (6 лет) к годам после данного события (9 лет). Отношение годов равно 0,666.

Полученные результаты соответствуют фибоначчиевским коэффициентам (0,618; 1,618) с точностью до второго знака или близки к ним.

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Вы слышали когда-нибудь, что математику называют «царицей всех наук»? Согласны ли вы с таким утверждением? Пока математика остается для вас набором скучных задачек в учебнике, вряд ли можно прочувствовать красоту, универсальность и даже юмор этой науки.

Но есть в математике такие темы, которые помогают сделать любопытные наблюдения за обычными для нас вещами и явлениями. И даже попытаться проникнуть за завесу тайны создания нашей Вселенной. В мире есть любопытные закономерности, которые могут быть описаны с помощью математики.

Представляем вам числа Фибоначчи

Числами Фибоначчи называют элементы числовой последовательности. В ней каждое следующее число в ряду получается суммированием двух предыдущих чисел.

Пример последовательности: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Записать это можно так:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2

Можно начинать ряд чисел Фибоначчи и с отрицательных значений n . При этом последовательность в таком случае является двусторонней (т.е. охватывает отрицательные и положительные числа) и стремится к бесконечности в обоих направлениях.

Пример такой последовательности: -55, -34, -21, -13, -8, 5, 3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Формула в этом случае выглядит так:

F n = F n+1 - F n+2 или иначе можно так: F -n = (-1) n+1 Fn .

То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе. А с этим названием вообще один сплошной исторический анекдот. Начнем с того, что сам Фибоначчи при жизни никогда не называл себя Фибоначчи – это имя стали применять к Леонардо Пизанскому только спустя несколько столетий после его смерти. Но давайте обо всем по порядку.

Леонардо Пизанский, он же Фибоначчи

Сын торговца, который стал математиком, а впоследствии получил признание потомков в качестве первого крупного математика Европы периода Средних веков. Не в последнюю очередь благодаря числам Фибоначчи (которые тогда, напомним, еще так не назывались). Которые он в начале XIII века описал в своем труде «Liber abaci» («Книга абака», 1202 год).

Путешествую вместе с отцом на Восток, Леонардо изучал математику у арабских учителей (а они в те времена были в этом деле, да и во многих других науках, одними из лучших специалистов). Труды математиков Античности и Древней Индии он прочитал в арабских переводах.

Как следует осмыслив все прочитанное и подключив собственный пытливый ум, Фибоначчи написал несколько научных трактатов по математике, включая уже упомянутую выше «Книгу абака». Кроме нее создал:

  • «Practica geometriae» («Практика геометрии», 1220 год);
  • «Flos» («Цветок», 1225 год – исследование, посвященное кубическим уравнениям);
  • «Liber quadratorum» («Книга квадратов», 1225 год – задачи о неопределенных квадратных уравнениях).

Был большим любителем математических турниров, поэтому в своих трактатах много внимания уделял разбору различных математических задач.

О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.

Фибоначчи и его задачи

После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.

Кролики – не только ценный мех

Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и с увлечением размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.

Надо вычислить, сколько кроликов мы получим через год.

  • В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.
  • Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).
  • Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.
  • Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n -ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: F n = F n-1 + F n-2 .

Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

  1. 1 + 1 = 2
  2. 2 + 1 = 3
  3. 3 + 2 = 5
  4. 5 + 3 = 8
  5. 8 + 5 = 13
  6. 13 + 8 = 21
  7. 21 + 13 = 34
  8. 34 + 21 = 55
  9. 55 + 34 = 89
  10. 89 + 55 = 144
  11. 144 + 89 = 233
  12. 233+ 144 = 377 <…>

Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.

Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению (прочитать о нем подробнее вы сможете дальше в статье).

Говоря языком математики, «предел отношений a n+1 к a n равен золотому сечению» .

Еще задачи по теории чисел

  1. Найдите число, которое можно разделить на 7. Кроме того, если разделить его на 2, 3, 4, 5, 6, в остатке получится единица.
  2. Найдите квадратное число. О нем известно, что если прибавить к нему 5 или отнять 5, снова получится квадратное число.

Ответы на эти задачи мы предлагаем вам поискать самостоятельно. Свои варианты вы можете оставлять нам в комментариях к этой статье. А мы потом подскажем, верными ли были ваши вычисления.

Пояснение о рекурсии

Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.

Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.

Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n- е число равно (n – 1) + (n – 2) .

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887 .

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Золотой прямоугольник и спираль Фибоначчи

Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?

Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.

А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.

Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.

Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.

Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.

Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, почему эта статья называется именно так? И двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе

Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

  • порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);

  • расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);

  • расположение чешуек сосновых шишек;
  • лепестки цветов;
  • ячейки ананаса;
  • соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.

Задачи по комбинаторике

Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.

Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.

Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы (источник - http://www.problems.ru/).

Задача №1:

Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим а n. Отсюда следует, что a 1 = 1, a 2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).

Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как a n–2 . А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как a n–1 .

Отсюда получаем такое равенство: a n = a n–1 + a n–2 (выглядит знакомо, не правда ли?).

Раз мы знаем a 1 и a 2 и помним, что ступенек по условию задачи 10, вычисли по порядку все а n : a 3 = 3, a 4 = 5, a 5 = 8, a 6 = 13, a 7 = 21, a 8 = 34, a 9 = 55, a 10 = 89.

Ответ: 89 способов.

Задача №2:

Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.

Обозначим за a n количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a 1 = 2, a 2 = 3.

В последовательности a 1 , a 2 , <…>, a n мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это a n–1 . А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как a n–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».

Мы смогли обосновать, почему a n = a n–1 + a n–2 .

Вычислим теперь a 3 = a 2 + a 1 = 3 + 2 = 5, a 4 = a 3 + a 2 = 5 + 3 = 8, <…>, a 10 = a 9 + a 8 = 144. И получим знакомую нам последовательность Фибоначчи.

Ответ: 144.

Задача №3:

Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n -ой клетки?

Обозначим число способов перемещения кузнечика по ленте до n -ой клетки как a n . В таком случае a 1 = a 2 = 1. Также в n + 1 -ую клетку кузнечик может попасть либо из n -ой клетки, либо перепрыгнув ее. Отсюда a n + 1 = a n – 1 + a n . Откуда a n = F n – 1 .

Ответ: F n – 1 .

Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.

Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

  • Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.
  • В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.
  • В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.
  • Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.
  • В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк (0, 1, 1, 2, 3, 5, 8, 13, 21):

0 Тронулся в путь состав

1 Щёлкнул один сустав

1 Дрогнул один рукав

2 Всё, доставайте стафф

Всё, доставайте стафф

3 Просьбой о кипятке

Поезд идёт к реке

Поезд идёт в тайге <…>.

  • лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:

Плотная пища жён Фибоначчи

Только на пользу им шла, не иначе.

Весили жёны, согласно молве,

Каждая - как предыдущие две.

Подводим итоги

Мы надеемся, что смогли рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».

Пользуйтесь формулой для чисел Фибоначчи при решении задач по комбинаторике. Вы можете опираться на примеры, описанные в этой статье.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Золотое сечение и числа Фибоначчи в фотографии

Создано 24.08.2012 09:49

Эта статья посвящена основным правилам и понятиям, связанным как непосредственно с процессом съемки, так и с последующей обработкой получившегося снимка в графических редакторах. Речь пойдет о правилах "Золотого Сечения", геометрических пропорциях, которые при правильном и грамотном их использовании позволяют создавать удивительные и гармоничные работы.

Золотое сечение - воистину первое, о чем следует знать начинающему фотографу! Оно же иногда называется - правилом третей. О эстетической ценности этого правила - было известно еще в древнейшие времена. Сознательно использовать правило третей начал - великий да Винчи, за ним это правило начали использовать и другие художники, а вслед за ними и фотографы, и кинооператоры, и архитекторы, дизайнеры. Начнём с математики.

Математическая интерпретация

Математически «Золотое сечение» определяется следующим образом - отношение целого к большей части должно равняться отношению большей части к меньшей. Если разделить отрезок прямой на две неравные части, чтобы его длина (а+в) относилась к большей части (а) так, как эта большая часть к меньшей (в), получим результат, который и называют «Золотое Сечение». Это число равняется 1.618 или 0.618. Части же целого отрезка (а+в), взятого за 1, выражают в относительных величинах: а=0.62..., в=0.38 или в процентах 62% и 38%.

Эти числа и получили название "золотых".

Примером же использования правила «Золотого сечения» в фотографии может являться расположение основных компонентов кадра в особых точках - «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

Рис.2 Практическое использование правила «Золотого сечения» при компоновке кадра.

Разумеется, в момент съемки мы не в состоянии просчитать и зрительно отложить в уме необходимые пропорции. Поэтому на момент съемки используется упрощенный вариант построения «Золотого сечения» или правило «Трети». Заключается оно в следующем: мы мысленно делим кадр на три части по горизонтали и вертикали и, в точках пересечения воображаемых линий, размещаем ключевые детали снимаемой сцены. Простейшая сетка «Третей» выглядит следующим образом: (рис 3).

Таким образом, кадр, сформированный по правилу золотого сечения, может выглядеть, к примеру, так: (рис 4,5)

Разумеется, мы можем комбинировать размещение объекта в зависимости от замысла фотографа и объекта съемки. На рис. 6 - 9 показаны различные варианты использования правила.

При использовании правила «Золотого сечения» нельзя забывать про линию горизонта.

Правильная постановка горизонта должна соответствовать, в зависимости от композиции, одной из линий горизонтальных третей, верхней или нижней. На рис.10 показано позиционирование горизонта по нижней линии трети.

По поводу «золотого сечения» можно говорить бесконечно. Ниже я хочу привести различные варианты сеток, созданных по правилу «Золотого сечения», для различных композиционных вариантов. Для того, чтобы понять эти принципы, необходимо самостоятельно экспериментально попробовать совместить сетки с вашими фотографиями. Базовые сетки выглядят так (рис.11-17):

Правило «Равновесия».

Композиционно кадр необходимо строить так, чтобы объекты на нем были уравновешены. Что это значит? А значит это, что гармонично будут смотреться снимки, на которых либо соблюдена симметрия (рис.18 - в данном случае уравновешивающими элементами являются столбы справа и слева), либо основной объект экспозиции компенсирован дополнительным или второстепенным (рис.19 - журавль слева уравновешивает композицию справа).

Как пел В. Цой: «Нужно место для шага вперед»!

Любой снимок, даже построенный по правилу «Золотого сечения», может быть неправильно воспринят и не понят, только лишь потому, что не учтено направление движение (взгляда, действия) объекта съемки. На рис.20 у девушки совершенно не остается места для продолжения движения (она уходит из кадра), хотя кадр и построен в соотношениях «Золотого сечения». На рис.21 такое пространство у нее есть. Повторюсь, данное правило касается не только движения (людей, животных машин), но и взгляда (портрет), динамики поворота тела, лица, или сюжетного действия.

Текст: Д.И. Жамков

Числа Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени итальянского математика средневековой Европы Леонардо Пизанского по прозвищу Фибоначчи, что обозначает «хороший сын родился».

Числа Фибоначчи так же называют золотым сечением. Не вдаваясь в математику, можно сказать лишь одно - изображения, которые согласуются с золотым сечением и числами Фибоначчи особенно благоприятны для человеческого глаза.

Многие фотографы и дизайнеры придерживаются пропорций 1:1.618 для построения более удачной композиции.

Эта последовательность была хорошо известна в Индии, где применялась в метрических науках. Позже многие исследователи начали замечать эту последовательность в природе и космосе.

Следующие два видео и последующие за ним изображения помогут вам лучше понять как это работает на практике.

Ниже представлены фотографии, которые сделаны с применением пропорций Фибоначчи.

ГОУ Гимназия №1505

«Московская городская педагогическая гимназия-лаборатория»

Реферат

Числа Фибоначчи и Золотое сечение

Азов Никита

Руководитель: Шалимова М.Н.

Введение ………………………………………………….……………2

Глава 1

История Чисел Фибоначчи.………………………………..……..5

Глава 2

Числа Фибоначчи как возвратная прогрессия………...…...……………………………………..….....12

Глава 3

Числа Фибоначчи и Золотое сечение………………………

Заключение …………………………………………………...…...16

Список литературы ………………………………………………………………….……..20


Введение.

Актуальность исследования. На мой взгляд в настоящие дни уделяется мало внимания математическим теоремам и фактам, известным из истории развития науки. На примере чисел Фибоначчи я хотел бы показать насколько они могут глобальны и широко применимы не только в математике, но и в повседневной жизни.

Целью моей работы является изучение истории, свойств, применения и связей чисел Фибоначчи с золотым сечением.

Глава 1. Числа Фибоначчи и их история.

Леонардо (1170-1250гг.) был рожден в Пизе. В последствии получил прозвище Фибоначчи, что означает «хорошо рожденный сын». Его отец торговал в арабских странах Северной Африки. Там Леонардо изучал математику с арабскими учителями, а также знакомился с достижениями индийских и древнегреческих ученых по трактатам в арабском переводе. Усвоив весь изучаемый им материал, он создал собственную книгу – «Книгу абака» (первое издание было написано в 1202 году, но до нас сохранилось только переиздание 1228 года). Таким образом, он стал первым средневековым выдающимся математиком, а также ознакомил Европу с арабскими цифрами и десятичной системой вычисления, которой мы пользуемся каждый день с ранних лет и до самой старости.

«Книгу абака» можно разделить на пять частей по содержанию. Первые пять глав книги посвящены арифметике целых числе на основе десятичной нумерации. В 6-7 главе описаны действия над обыкновенными дробями. В 8-10 главе описаны приемы решения задач с помощью пропорций. В 11 главе рассматриваются задачи на смешение, в 12 главе речь идет о так называемых числах Фибоначчи. Далее описаны еще некоторые приемы с числами и приведены задачи на разные темы.

Основная задача поясняющая возникновение ряда чисел Фибоначчи – задача о кроликах. Вопрос задачи звучит так: «Сколько пар кроликов в один год рождается от одной пары?». К задаче дано пояснение, что пара кроликов через месяц рождает еще одну пару, а по природе кролики начинают рожать потомство на второй месяц после своего рождения. Автор дает нам решение задачи. Получается, что в первый месяц первая пара родит еще одну. Во второй первая пара родит еще одну – будет три пары. В 3-ий месяц родят две пары – изначально данная и рожденная в первый месяц. Получается 5 пар. И так далее, используя такую же логику в рассуждении мы получим, что в четвертый месяц будет 8 пар, в пятый 13, в шестой 21, в седьмлй 34, в в восьмой 55, в девятый 89, в дестый 144, в одиннадцатый 233, в двенадцатый 377.


Мы можем обозначить кол-во кроликов в любой из двенадцати месяцев как u n. Мы получаем ряд чисел:

В ряде этих чисел каждый член равен сумме двух предыдущих. Получается, что любой член уравнения можно определить по уравнению:

Рассмотрим важный частный случай для этого уравнения, когда u 1 и u 2 =1. Мы получим последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377… Эту же последовательность чисел мы получали в задачу про кроликов. Эти числа названы числами Фибоначчи в честь автора.

Эти числа а также уравнение (2) обладает многими свойствами, который будут рассматриваться в моей работе.

Глава 2. Связь между рядом Чисел Фибоначчи и прогрессиями. Основные свойства ряда.

Для того, чтобы вывести основные свойства ряда возьмем как пример первые пять чисел: 1, 1, 2, 3, 5, 8. Мы видим, что каждое новое число равно сумме двух предыдущих. Отсюда мы можем вывести формулу получения любого числа ряда, а также формулу суммы любого кол-ва чисел из ряда.

Мы видим, что формулы кардинально отличаются от формул свойственных арифметической и геометрической прогрессий. А также мы можем сказать что только первые два числа из ряда могут относится к каким либо прогрессиям.

У арифметической и геометрических прогрессий имеются только две ранее упомянутые формулы, и чтобы посчитать например сумму четных, нечетных или сумму квадратов чисел каждый раз приходится решать задачу для отдельно взятого ряда. Но так как ряд чисел Фибоначчи является неизменным (не имеет шагов, знаменателей и различных первых членов прогрессии), то это значит, что для него можно вывести формулу получения сумм отдельных элементов ряда. Вот например формула для получения суммы чисел ряда под четными номерами:

Существует аналогичная формула для чисел из ряда под нечетными номерами:

Также есть формула для получения суммы чисел из ряда возведенных в квадрат:

У чисел Фибоначчи есть еще одно уникальное свойство, которое нехарактерно для для арифметической и геометрической прогрессий. Отношение ряда чисел (предыдущего к последующему) постоянно стремится к значению 0.618, аналогичная ситуация происходит при делении F n на F n +2 (отношение стремится к 0.382), при делении F n на F n +3 (отношение стремится к 0.236) и так далее. В итоге мы получили набор отношений. Набор их значений и значений обратных им называются фибоначчиевы коэффициенты. А значение обратное 0.618 – 1.618, является числом

(«фи»). Он также является одним из пары корней характерического для ряда многочлена x 2 -x-1.

Глава 3. Золотое сечение и числа Фибоначчи.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) - деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Попробуем объяснить это на примере бесконечной прямой. Примем всю прямую с за единицу. Разделим ее на две части a и b, которые делят прямую на отрезки равный по отношению к 1, как 0.618 и 0.382 соответственно. А эти числа являются одними из коэффициентов ряда чисел Фибоначчи. Мы получаем, что отношение больших частей этой прямой к меньшим асимптотически приближается к числу

.

Существует две основные фигуры, в которых отражается принцип золотого сечения.

Золотое сечение было известно еще древним грекам. Архимед считается открывателем Архимедовой спирали. Её смысл состоит в том, что каждый новый завиток увеличивается в определенное число, и отношение этих завитков равно числу

.

Вторая фигура – золотой треугольник. Это равнобедренный треугольник, в котором отношение боковых сторон к основанию равно