Как влияет ультрафиолетовое излучение на организм человека. Что такое Ультрафиолетовый свет: УФ-излучение

Чтобы получать выгоду от окружающего мира и избегать его опасностей, надо хоть что-то об этом мире знать. Поэтому даже у примитивных сидячих животных, неподвижных и со всех сторон одинаковых, есть чувствительные клетки или целые органы. Они собирают данные об окружающей среде, и уже на основе этих данных животные совершают наиболее подходящие действия.

Организмы научились отличать свет от тьмы очень давно. Для многих животных, в том числе и людей, зрение — основной источник информации об окружающем мире. Как же устроен этот процесс?

В первом приближении глаз позвоночных и головоногих моллюсков (одни из самых продвинутых существ в «параллельной» с нами ветке эволюции) устроен как фотоаппарат. Есть линза (хрусталик), есть отверстие, через которое свет попадает на линзу (зрачок). Наконец, есть фотопластинка (или матрица у современных фотоаппаратов) — сетчатка. Чувствительные клетки (фоторецепторы) в ее составе активируются при падении света определенной длины волны. Для каждого типа клеток сетчатки диапазон оптимальных длин волн свой.

Глаз - очень сложная структура, и для полноценного зрения нужно, чтобы хорошо работали все ее элементы. Фото: Alexilus/shutterstock

Есть две большие группы фоторецепторов — палочки и колбочки. Палочки активировать легко, для этого не нужна сильная освещенность. Но и четкость изображения они дают слабенькую. В этом легко убедиться, если пойти ночью в лес без фонарика: что-то видно, но лишь в общих чертах. А еще совершенно непонятно, какого цвета окружающие предметы. Для распознавания цветов и их оттенков нужны колбочки. Эти рецепторы активировать сложнее, и работают они только при хорошем освещении.

Разные типы колбочек отвечают за распознавание различных цветов, реагируя на свет в узком диапазоне длин волн. Поэтому иметь какой-то один тип колбочек бессмысленно: «палочные сумерки» просто приобретут тот или иной оттенок. Это непрактично и опасно: с таким зрением, например, невозможно будет отличить спелые плоды от неспелых, а незрелые фрукты могут быть ядовитыми. Так что зрячие животные обзавелись минимум двумя типами колбочек.

«У человека три типа колбочек и один тип палочек, — поясняет Павел Максимов, кандидат биологических наук, старший научный сотрудник лаборатории обработки сенсорной информации ИППИ РАН. — Даже если бы у нас был всего один тип колбочек и палочки, мы, возможно, могли бы различать цвета, но только при сумеречном освещении, при котором функционируют и палочки, и колбочки. Кроме самих рецепторов нужна соответствующая обработка сигнала. Например, если сигналы от рецепторов разных типов просто сложить, никакой информации о цвете не останется. Зрительная система должна уметь сравнивать сигналы от разных рецепторов, чтобы определить, что сигнал от коротковолновых («синих») колбочек сильнее или слабее, чем от длинноволновых («красных»)».

Палочки (слева) и колбочки весьма небольшие: их длина не превышает 0,06 миллиметра. Фото: Designua/shutterstock

Колбочки и эволюция

Если животное ориентируется в основном на зрение, ему хорошо бы уметь различать множество разных оттенков, а для этого нужно больше двух типов колбочек.

Мужское и женское

Несмотря на то что тема равенства полов стала очень модной, по части восприятия цветов мужчины и женщины заметно различаются. Скажем, нарушения цветового зрения чаще бывают у мужчин. И дело здесь не только в том, что гены, мутации в которых вызывают потерю какого-нибудь типа колбочек, расположены на Х-хромосоме, которая у сильного пола одна.

Восприятие цветов, как и звуков, зависит от уровня тестостерона в организме. У самых женственных мужчин рецепторов к этому гормону в разы больше, чем у самых крепких женщин. И в частности, их очень много на нейронах головного мозга, особенно в затылочной доле коры — там, куда приходят зрительные сигналы. В итоге у мужчин образуется больше связей между нейронами зрительной коры и зрительных зон таламуса, откуда сигналы попадают в затылочные доли. Кроме того, по не до конца ясным причинам мужчины лучше отслеживают быстро сменяющие друг друга мелкие детали, а женщины хорошо различают оттенки близких цветов. Возможно, эти особенности развились у мужчин из-за того, что в древнем обществе они занимались охотой, а женщины собирали растения и грибы.

Охота требовала от древних мужчин умения различать быстро движущиеся детали. Фото: Dieter Hawlan/shutterstock

Исследование 2001 года показало, что среди женщин гораздо чаще встречаются индивидуумы с четырьмя (а не тремя) типами пигментов — молекул, лежащих в основе работы колбочек (в палочках пигменты тоже есть, но другие). Это одна из причин, почему женщина в среднем может назвать больше разных оттенков, чем мужчина. Наконец, колбочки мужчин настроены на свет чуть больших длин волн, чем зрительные рецепторы женщин: по-видимому, сильный пол при прочих равных видит мир более красным .

Цветотерапия

Этот раздел альтернативной медицины учит, что различные заболевания, вплоть до рака, можно лечить, давая больному смотреть на определенный цвет в зависимости от того, что болит. Вот только рекомендации к лечению во многих клиниках разные, общего стандарта нет . А это первый звоночек, что цветотерапия — метод непроверенный. Разумеется, цвета, которые человек видит регулярно, могут влиять на его эмоции и на восприятие мира. Но это верно и для любых других элементов обстановки. А изменение настроения — это еще не лечение, хотя вещь в большинстве случаев полезная.

Некоторые психологи активно используют в практике цветотерапию, но серьезного научного обоснования у этого подхода нет. Фото: Olimpik/shutterstock

Хотя зрительная система — одна из самых изученных сенсорных систем, оценить, насколько восприятие цветов изменилось в ходе эволюции и как оно отличается у животных разных видов и внутри видов, непросто. Приходится учитывать и число различных типов зрительных пигментов, и строение сетчатки и зрительных областей мозга, и пол, и даже родной язык — если мы говорим о людях. Словесные описания одного и того же предмета при одинаковом освещении от разных авторов могут заметно отличаться. А если тестировать цветовое зрение, не прибегая к словам (например, выделять «особый квадрат» из десятков одинаковых), выяснится, что два человека могут различать два цвета, но мы никогда не узнаем, что точно они видят при этом. Ну и конечно, нейронные сигналы, возникающие в мозге в ответ на какой-либо цвет, совершенно индивидуальны.

Светлана Ястребова

Ультрафиолет — это часть спектра электромагнитного излучения, которая находится за границами нашего восприятия. Проще говоря — невидимое излучение. Но не совсем. Видимый нами свет ограничен длинами волн от 380 нм до 780 нм (нанометров). Длина волн ультрафиолета или ультрафиолетового излучения лежит в диапазоне от 10 нм до 400 нм. Получается, что все-таки мы можем видеть ультрафиолет — но только его малую часть, находящуюся в небольшом промежутке между 380 и 400 нм.

Все. Сухие факты закончились, начинаются факты интересные. Дело в том, что это еле видимое излучение на самом деле играет огромную роль не только в биосфере (об этом мы обязательно расскажем отдельно), но и в освещении. Проще говоря, ультрафиолет помогает нам видеть.

Ультрафиолет и освещение

Основное применение ультрафиолет нашел в светильниках. Электрические разряды заставляют светиться газ внутри люминесцентной лампы (или компактной люминесцентной лампы) в ультрафиолетовом диапазоне. Для того чтобы получить видимый свет , на стенки лампы наносится специальное покрытие из материала, который будет флуоресцировать — то есть светиться в видимом диапазоне — под воздействием ультрафиолетового излучения. Такой материал называется люминофором, и производители постоянно работают над улучшением его состава, чтобы повысить качество получаемого видимого света. Именно поэтому на сегодняшний день мы имеем неплохой выбор люминесцентных ламп, которые не только выигрывают у обычных ламп накаливания в энергоэффективности, но и производят достаточно приятный для глаза свет практически полного спектра.

Какие еще могут быть применения у ультрафиолета?

Существует целый ряд материалов, способных светиться в ультрафиолете. Эта способность называется флуоресценцией — ей обладают многие органические вещества. Кроме нее существует и так называемая фосфоресценция — ее отличие в том, что вещество испускает свет с более низкой интенсивностью, но продолжает светиться еще некоторое время (часто довольно длительное — до нескольких часов) после прекращения воздействия на него ультрафиолетового излучения. Эти свойства активно используются при изготовлении различных «светящихся в темноте» предметов и украшений.

Cтраница 1


Видимый и ультрафиолетовый свет пропускается различными образцами зеркального и оптического стекла до длин волн 3200 - 3500 А, более короткие волны стекло не пропускает. Плавленый кварц пропускает волны длиной 2000 А, однако серьезным недостатком его является малая механическая прочность.  

Поглощение видимого и ультрафиолетового света соответствует квантам энергии от 30 до 300 ккал / моль.  

Для видимого и ультрафиолетового света хорошие результаты дают прозрачные металлические слои платины, родия , сурьмы (4000 до 2000 А) , отложенные испарением на кварцевые пластинки.  

Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е hv, где h - постоянная Планка, равная 6 6262 - 10 34 Дж - с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна hv, где v - частота электромагнитной волны. Зависимость поглощения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствующая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий.  

Исследования поглощения видимого и ультрафиолетового света уже давно используются для получения информации о равновесии в растворе. Однако, так как оптическая плотность раствора зависит от специфического фактора интенсивности (коэффициента экстинкции), а также от концентрации каждой поглощающей формы, интерпретация измерений часто усложняется, если присутствует несколько комплексов. Метод непрерывных изменений (метод Жоба) и другие ненадежные методы, которые все еще часто применяются для вычисления констант устойчивости из спектрофотометрических данных, критически разобраны в разд. Настоящая глава рассматривает главным образом более точные методы обработки измерений поглощения в видимой и ультрафиолетовой частях спектра. В этой главе также рассматривается использование позднее разработанных областей спектроскопии и близко с ними связанных поляриметрических и магнитооптических методов для изучения равновесия в растворе.  

Описана теломеризация под влиянием видимого и ультрафиолетового света, радиоактивного излучения и радиоактивных частиц, протекающая по радикальному механизму.  


Окошко следует защищать от видимого и ультрафиолетового света.  

Алюминийорганические соединения обычно не поглощают видимый и ультрафиолетовый свет. Несомненно, однако, что поглощение может быть вызвано введением некоторых заместителей, например арильных групп. Как уже указывалось выше, донорноакцепторные комплексы с алифатическими и циклическими альдиминами (например, с бензальанилином, пиридином и бензопиридинами) в большей или меньшей степени окрашены. Эта окраска может быть использована для различных количественных определений.  

Как установлено , облучение видимым и ультрафиолетовым светом полимеров, предварительно облученных 1У излУчением, позволят получить дополнительную информацию о природе и свойствах парамагнитных частиц. Оказалось, что парамагнитные образования в полимерах поглощают свет в видимой, и УФ-области.  

Ароматические поликарбонаты очень устойчивы к действию видимого и ультрафиолетового света даже в присутствии воздуха.  

Методами качественной и количественной спектроскопии в видимом и ультрафиолетовом свете широко пользуются для определения некоторых витаминов, гормонов и других биологически активных веществ.  

На основании изучения спектров поглощения в инфракрасном, видимом и ультрафиолетовом свете, а также изучения комбинационного рассеяния света органическую молекулу, как упоминалось выше, нужно представлять не как статическую систему. Атомы в молекулах не неподвижны, а совершают колебания, приближающиеся к гармоническим. Степень отклонения колебаний атомов от колебаний типа гармонического - так называемая антигармоничность - определяет способность, молекулы к распаду на составные части.  

На рис. 16 изображен спектрофотометр СФ-4 для видимого и ультрафиолетового света.  

Крониг показал , что в области видимого и ультрафиолетового света эти представления ведут к следствиям в отношении дисперсии и абсорбции, качественно совпадающим с результатами опыта.  

15 февраля 2012 в 01:30

Пациент с искусственным хрусталиком начал видеть ультрафиолет. Как?

  • Биотехнологии

Сегодня на slashdot появился пост некоего автора, который после имплантирования искусственного хрусталика начал видеть в ультрафиолетовом диапазоне, точнее примерно 365 нм - это при средней верхней границе для обычного человека в 400нм. Меня заинтересовала эта тема, и я решил выяснить, что там происходит, и не маячит ли тут призрак Криса Картера .


Итак, небольшой экскурс в офтальмохирургию. Во время второй мировой войны некий английский офтальмолог, оперировавший пилотов, сбитых в воздушном бою, выяснил, что плексиглас фонаря самолета, попавший в глаз, не отторгается тканями. Мало того, он травматически меняет форму роговицы - а поскольку она отвечает за ~70% рефракции в глазном яблоке (остальное приходится на хрусталик), то изменение ее формы приводит к значительным изменениям рефракции глаза. Естественно, тут же пришла идея лечить близорукость уменьшением оптической силы роговицы путем ее надрезания и уменьшения кривизны. По сегодняшним меркам это напоминает трепанацию черепа каменным ножом (и без точнейших замеров и расчетов по точности это примерно то же самое) - но это было лучше чем ничего.

Потом догадались, что если плексиглас не отторгается, то его можно ставить туда намеренно… предварительно обточив до формы линзы. Зачем? Потому что годам к 45-50 естественный хрусталик а) становится жестким и теряет возможность аккомодации (что приводит к невозможности перефокусировать зрение), и б) некоторое время спустя мутнеет, в результате чего зрение медленно падает почти до нуля. Так вот, его можно заменить.

Поначалу вместо естественного хрусталика ставились жесткие линзы, которые, вполне естественно, вызывали массу неприятных ощущений, повреждали внутренние ткани, итп. Сейчас в общих чертах процедура выглядит так. Я буду использовать англоязычную терминологию в транслите.

1. Пациент лежит под микроскопом. Веки фиксируются в открытом положении, в глазной нерв ставится анестезия.

2. Сбоку глаза, примерно на границе радужной оболочки, с использованием сверх-острого скальпеля делается небольшой надрез, порядка 2мм в длину.

3. Хрусталик находится внутри капсулярной сумки. Внутрь глаза через этот разрез проникает инструмент, которым эта сумка надрезается.

4. Внутрь сумки через эти два разреза проникает щуп факоэмульсификатора. Этот девайс а) ультразвуком размельчает затвердевший естественный хрусталик, и б) одновременно высасывает размельченные куски. Тут важно не порвать капсулярную сумку - это чревато массой проблем и осложнений, а также не задеть радужную оболочку. Она по консистенции напоминает промокашку, и ее повреждение ведет к проблемам со зрением - к примеру, пациент может начать видеть ореолы вокруг точечных источников света.

5. После факоэмульсификации через микрошприц в капсулярную сумку закачивается вискоэластичный гель - чтобы эта сумка не сдулась, т.к. хрусталика там больше нет.

6. Фанфары и барабаны - имплантируем линзу. Сама линза сделана из материалов вроде силикона, и ее можно сложить. Именно поэтому достаточно разреза всего в 2мм, хоть линза и заметно больше. Она поставляется в картридже, который вставляется в шприц, который аккуратно вставляется через разрез в глаз, далее в капсулярную сумку, и попросту выдавливается туда. Там она разворачивается и принимает свой первоначальный вид, в чем ей помогает хирург. Через пол-минуты она готова.

7. Если линза асферическая, то она может заодно помочь и с астигматизмом. В таком случае ее надо довернуть на нужный угол. Впоследствии ткани глаза срастутся через определенные выступы на внешней, оптически нефункциональной части линзы, и зафиксируют ее от поворота. Нередки случаи, когда линза все же проворачивается бесконтрольно - это исправляется повторной операцией.

8. Глаз увлажняется, закрывается повязкой. Надрез заживет сам. Пациент отправляется домой.

Такая операция может стоить от 3 до 20 тысяч долларов в зависимости от разных причин. Период восстановления до снятия повязки занимает сутки-двое. Да, в это иногда трудно поверить, но в нашей практике были случаи, когда 70-летние бабушки получали зрение в 80% на следующий день после операции… никогда сам не видел, но, как говорят, люди начинают плакать от счастья.

А теперь по теме. Почему тот пациент начал видеть УФ? Потому, что хрусталик обычно поглощает УФ лучи, не допуская их до сетчатки. Старые линзы изготавливались из материалов, которые зачастую спокойно пропускали УФ, и пациенты начинали видеть в УФ диапазоне. Вот только длилось это недолго, т.к. сетчатка повреждается ультрафиолетом. Поэтому в новых линзах присутствуют добавки, которые отфильтровывают УФ лучи. Тому пациенту была установлена линза Crystalens, которая по всей видимости содержит меньшее количество таких присадок (или вообще их не содержит), отсюда имеем результат. Шеф как-то оперировал одного пациента, которому по разным причинам на одном глазу была показана одна линза, а на другом - другая, и коэффициент поглощения УФ у них был разный. Пациент потом был весьма удивлен, что одним глазом он может видеть УФ, а другим нет. Его это не беспокоило, и все остались весьма довольны.

P.S. Материал был написан после консультации с моим шефом, офтальмохирургом с более чем 10-летним стажем. Если в тексте присутствуют ошибки - я полностью принимаю всю ответственность за кривой перевод, и прошу указать на оные.

P.P.S. Чем я таким занимаюсь, будучи программистом, чтобы писать такие тексты? Хороший вопрос. Наша компания консультирует других по поводу расчетов правильных линз для каждого конкретного глаза… а я занимаюсь реализацией расчетного софта. Невероятно интересная тема, и весьма вознаграждающая, особенно когда нам пишут про бабушек и дедушек, получивших орлиное зрение.

Здоровья вам, берегите глаза:)

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля , Македонио Меллони и др.

Подтипы

Деградация полимеров и красителей

Сфера применения

Чёрный свет

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ , нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D . В настоящее время популярны фотарии, которые в быту часто называют соляриями .

Ультрафиолет в реставрации

Один из главных инструментов экспертов - ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине - белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м - титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок - это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Примечания

  1. ISO 21348 Process for Determining Solar Irradiances . Архивировано из первоисточника 23 июня 2012.
  2. Бобух, Евгений О зрении животных . Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
  3. Советская энциклопедия
  4. В. К. Попов // УФН . - 1985. - Т. 147. - С. 587-604.
  5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал . - 1977. - Т. 22. - № 1. - С. 157-158.
  6. А. Г. Молчанов