Что такое биологически активное вещество. Понятие “биологически активное вещество” (БАВ)

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования «Пермский государственный технический университет» Кафедра химии и биотехнологии

Химия биологически активных соединений

Конспект лекций для студентов очной формы обучения

по специальности 070100 «Биотехнология»

Издательство

Пермского государственного технического университета

Составитель: канд. Биол. Наук л.В. Аникина

Рецензент

канд. хим. наук, доц. И.А.Толмачева

(Пермский государственный университет)

Химия биологически активных веществ /сост. Л.В. Аникина – Пермь: Изд-во Перм. гос. техн. ун-та, 2009. – 109 с.

Представлен конспект лекций по программе курса «Химия биологически активных веществ».

Предназначено для студентов очной формы обучения по направлению 550800 «Химическая технология и биотехнология», специальности 070100 «Биотехнология».

© ГОУ ВПО

«Пермский государственный

технический университет», 2009

Введение…………………………………………………………………………..4

Лекция 1. Химические компоненты живого…………………………………….7

Лекция 2. Углеводы…………………………………………………………… .12

Лекция 3. Липиды………………………………………………………………..20

Лекция 4. Аминокислоты……………………………………………………..…35

Лекция 5. Белки……………………………………………………………….….43

Лекция 6. Свойства белков……………………………………………………...57

Лекция 7. Простые и сложные белки…………………………………………...61

Лекция 8. Нуклеиновые кислоты и нуклеопротеиды………………………….72

Лекция 9. Ферменты………………………………………………………….….85

Лекция 10. Классификация ферментов………………………………………... 94

Введение

При подготовке специалистов по биотехнологии важнейшими базовыми дисциплинами являются биохимия, органическая химия и химия биологически активных веществ. Эти дисциплины составляют фундаментальную основу биотехнологии, с развитием которой связывают решение таких важнейших социальных проблем современности, как обеспечение энергией, кормовыми и пищевыми ресурсами, охрана окружающей среды и здоровья человека.

Согласно требованиям Государственного Стандарта высшего профессионального образования к обязательному минимуму содержания основных образовательных программ по направлению 550800 «Химическая технология и биотехнология», специальности 070100 «Биотехнология» дисциплина «Химия биологически активных веществ» включает в себя следующие дидактические единицы: структура и пространственная организация белков, нуклеиновых кислот, углеводов, липидов, низкомолекулярных биорегуляторов и антибиотиков; понятие о ферментах, антителах, структурных белках; ферментативный катализ.

Цель преподавания дисциплины «Химия биологически активных веществ» заключается в формировании у студентов представлений о струк-туре и основах функционирования биологически активных веществ, о фер-ментативном катализе.

Лекции по дисциплине «Химия биологически активных веществ» базируется на знании студентами курсов «Общая химия», «Неорганическая химия», «Физическая химия», «Аналитическая химия» и «Химия координационных соединений». Положения данной дисциплины используются для дальнейшего изучения курсов «Биохимия», «Микробиология», «Биотехнология».

Предлагаемый конспект лекций раскрывает следующие темы, читаемые в курсе «Химия биологически активных веществ»:

    Углеводы, классификация, химическое строение и биологическая роль, химические реакции, свойственные углеводам. Моносахариды, дисахариды, полисахариды.

    Липиды. Классификация по химическому строению, биологические функции липидов и их производных – витаминов, гормонов, биорегуляторов.

    Аминокислоты, общая формула, классификация и бологическая роль. Физико-химические свойства аминокислот. Протеиногенные аминокислоты, аминокислоты как предшественники биологически активных молекул – коферментов, желчных кислот, нейромедиаторов, гормонов, гистогормонов, алкалоидов, и некоторых антибиотиков.

    Белки, элементный состав и функции белков. Первичная структура белка. Характеристика пептидной связи. Вторичная структура белка: α-спираль и β-складчатость. Надвторичная структура белка, доменный принцип эволюции белков. Третичная структура белка и связи, ее стабили-зирующие. Понятие о фибриллярных и глобулярных белках. Четвертичная структура белка.

    Физико-химические и биологические свойства белков. Денатурация. Шапероны.

    Простые белки: гистоны, протамины, проламины, глютеины, альбумины, глобулины, склеропротеиды, токсины.

    Сложные белки: хромопротеиды, металлопротеиды, липопротеиды, гликопротеиды, протеогликаны, нуклеопротеиды.

    Нуклеиновые кислоты, биологическая роль в клетке. Азотистые основания, нуклеозиды, нуклеотиды, полинуклеотиды ДНК и РНК. Виды РНК. Пространственная структура ДНК, уровни компактизации ДНК в хроматине.

    Ферменты как биологические катализаторы, их отличие от катализаторов небелковой природы. Простые и сложные ферменты. Активный центр фермента. Механизм действия ферментов, снижение энергии активации, образование фермент-субстратного комплекса, теория деформации связей, кислотно-основной и ковалентный катализ. Изоформы ферментов. Полиферментные системы.

    Регуляция активности ферментов на клеточном уровне: ограниченный протеолиз, агрегация молекул, химическая модификация, аллостерическое ингибирование. Типы ингибирования: обратимое и необратимое, конкурентное и неконкурентное. Активаторы и ингибиторы ферментов.

    Номенклатура ферментов. Международная классификация ферментов.

    Оксидоредуктазы: НАД-зависимые дегидрогеназы, флавинзависимые дегидрогеназы, хиноны, система цитохромов, оксидазы.

    Трансферазы: фосфотрансферазы, ацилтрансферазы и коэнзим-А, аминотрансферазы, использующие пиридоксальфосфат, С 1 -трансферазы, содержащие в качестве коферментов активные формы фолиевой кислоты и цианокобаламина, гликозилтрансферазы.

    Гидролазы: эстеразы, фосфатазы, гликозидазы, пептидазы, амидазы.

    Лиазы: декарбоксилазы, использующие в качестве кофермента тиаминпирофосфат, альдолаза, гидратазы, дезаминазы, синтазы.

    Изомеразы: перенос водорода, фосфатных и ацильных групп, перемещение двойных связей, стереоизомеразы.

    Лигазы: сопряженность синтеза с распадом АТФ, карбоксилазы и роль карбоксибиотина, ацил-коэнзим А-синтетазы.

В конце конспекта лекций приведен список литературы, которой необходимо пользоваться для успешного освоения курса «Химия биологически активных веществ».

Вся жизнедеятельность организма стоит на трех китах – саморегуляции, самообновлении и самовоспроизведении. В процессе взаимодействия с меняющейся средой организм вступает с ней в сложные отношения и постоянно приспосабливается к изменяющимся условиям. Это и есть саморегуляция, немаловажная роль в обеспечении которой принадлежит биологически активным веществам.

Основные биологические понятия

Под саморегуляцией в биологии понимают способность организма поддерживать динамический гомеостаз.

Гомеостаз – это относительное постоянство состава и функций организма на всех уровнях организации – клеточном, органном, системном, организменном. И именно на последнем поддержание гомеостаза обеспечивается биологически активными веществами регуляторных систем. А в организме человека этим занимаются следующие системы - нервная, эндокринная и иммунная.

Биологически активные вещества, выделяемые организмом, это вещества, способные в малых дозах изменять скорость обменных процессов, регулировать метаболизм, синхронизировать работу всех систем организма, а также влиять на особей противоположного пола.

Многоуровневая регуляция – разнообразие агентов влияния

Биологически активными веществами могут считаться абсолютно все соединения и элементы, которые встречаются в организме человека. И хотя все они обладают специфической активностью, выполняя или влияя на каталитические (витамины и ферменты), энергетические (углеводы и липиды), пластические (белки, углеводы и липиды), регуляторные (гормоны и пептиды) функции организма. Все они делятся на экзогенные и эндогенные. Экзогенные биологически активные вещества поступают в организм извне и различными путями, а эндогенными считаются все элементы и вещества, что входят в состав организма. Остановим свое внимание на некоторых важных для жизнедеятельности нашего организма веществах, дадим краткую их характеристику.


Главные – гормоны

Биологически активные вещества гуморальной регуляции организма – гормоны, которые синтезируются железами внутренней и смешанной секреции. Главные их свойства заключаются в следующем:

  1. Действуют на расстоянии от места образования.
  2. Каждый гормон строго специфичен.
  3. Быстро синтезируются и быстро инактивируются.
  4. Эффект достигается при очень малых дозах.
  5. Выполняют роль промежуточного звена в нервной регуляции.

Секреция биологически активных веществ (гормонов) обеспечивается эндокринной системой человека, в которую входят железы внутренней секреции (гипофиз, эпифиз, щитовидка, паращитовидные, вилочковая, надпочечные) и смешанной секреции (поджелудочная и половые железы). Каждая железа выделяет собственные гормоны, которые обладают всеми перечисленными свойствами, работают по принципам взаимодействия, иерархичности, обратной связи, взаимосвязи с внешней средой. Все они становятся биологически активными веществами крови человека, ведь только таким способом они доставляются к агентам взаимодействия.

Механизм воздействия

Биологически активные вещества желез включаются в биохимию жизненных процессов и воздействуют на специфические клетки или органы (мишени). Они могут быть белковой природы (соматотропин, инсулин, глюкагон), стероидными (половые и гормоны надпочечников), быть производными аминокислот (тироксин, трийодтиронин, норадреналин, адреналин). Биологически активные вещества желез внутренней и смешанной секреции обеспечивают контроль за этапами индивидуального эмбрионального и постэмбрионального развития. Их недостаток или избыток приводит к нарушениям различной степени тяжести. Например, недостаток биологически активного вещества железы внутренней секреции гипофиза (гормона роста) приводит к развитию карликовости, а его избыток в детском возрасте - к гигантизму.


Витамины

Существование этих низкомолекулярных органических биологически активных веществ открыл российский врач М.И. Лунин (1854-1937). Это вещества, не выполняющие пластических функций и не синтезируемые (или синтезируемые в очень ограниченном количестве) в организме. Именно поэтому основным источником для их получения является пища. Как и гормоны, витамины проявляют свое действие в малых дозах и обеспечивают протекание процессов метаболизма.

По своему химическому составу и воздействию на организм витамины очень разнообразны. В нашем организме только витамины группы В и К синтезируются бактериальной микрофлорой кишечника, а витамин D синтезируется клетками кожи под воздействием ультрафиолета. Все остальные мы получаем с пищей.

В зависимости от обеспеченности организма этими веществами, выделяют следующие патологические состояния: авитаминозы (полное отсутствие какого-либо витамина), гиповитаминозы (частичный дефицит) и гипервитаминозы (переизбыток витамина, чаще – А, D, С).


Микроэлементы

В состав нашего организма входит 81 элемент периодической таблицы из 92. Все они важны, но некоторые необходимы нам в микроскопических дозах. Эти микроэлементы (Fe, I, Cu, Cr, Mo, Zn, Co, V, Se, Mn, As, F, Si, Li, B и Br) долго оставались загадкой для ученых. Сегодня их роль (как усилителей мощности ферментной системы, катализаторов обменных процессов и строительных элементов биологически активных веществ организма) не вызывает сомнений. Дефицит микроэлемента в организме приводит к образованию ущербных ферментов и нарушению их функций. Например, дефицит цинка приводит к нарушениям в транспортировке углекислоты и к нарушению работы всей сосудистой системы, развитию гипертонии.

И примеров можно приводить множество, а в целом дефицит одного или нескольких микроэлементов приводит к задержкам развития и роста, нарушениям кроветворения и работы иммунной системы, разбалансировке регуляторных функций организма. И даже к преждевременному старению.


Органические и активные

Среди множества органических соединений, которые играют важнейшую роль в нашем организме, выделим следующие:

  1. Аминокислоты, которых в организме синтезируется двенадцать из двадцати одной.
  2. Углеводы. Особенно глюкоза, без которой мозг не может правильно работать.
  3. Органические кислоты. Антиоксиданты – аскорбиновая и янтарная, антисептическая бензойная, улучшитель работы сердца – олеиновая.
  4. Жирные кислоты. Всем известные Омега-3 и 5.
  5. Фитонциды, которые содержатся в растительной пище и обладают способностями к уничтожению бактерий, микроорганизмов и грибков.
  6. Флавоноиды (фенольные соединения) и алкалоиды (азотосодержащие вещества) природного происхождения.

Ферменты и нуклеиновые кислоты

Среди биологически активных веществ крови следует выделить еще две группы органических соединений – это ферментные комплексы и аденозинтрифосфорные нуклеиновые кислоты (АТФ).

АТФ является универсальной энергетической валютой организма. Все обменные процессы в клетках нашего тела протекают с участием этих молекул. Кроме того, активный транспорт веществ через клеточные мембраны невозможен без этой энергетической составляющей.

Ферменты (как биологические катализаторы всех процессов жизнедеятельности) также являются биологически активными и необходимыми. Достаточно сказать, что гемоглобин эритроцитов не может обойтись без специфических ферментных комплексов и аденозинтрифосфорной нуклеиновой кислоты как при фиксации кислорода, так и при его отдаче.


Волшебные феромоны

Одними из самых загадочных биологически активных образований являются афродизиаки, главная цель которых - установление коммуникации и сексуального влечения. У человека эти вещества выделяются в области носа и губных складок, груди, в анальной и генитальной областях, подмышечных впадинах. Они работают в минимальных количествах и при этом не осознаются на сознательном уровне. Причина тому – они попадают в вомероназальный орган (расположен в носовой полости), у которого прямая нервная связь с глубинными структурами головного мозга (гипоталамусом и таламусом). Кроме привлечения партнера, последние исследования доказывают, что именно эти летучие образования ответственны за плодовитость, инстинкты заботы о потомстве, зрелости и прочности брачных связей, агрессивности или покорности. Мужской феромон андростерон и женский копулин быстро разрушаются в воздухе и работают только при близких контактах. Именно поэтому не стоит особо доверять косметологическим производителям, которые активно эксплуатируют тему афродизиаков в своей продукции.


Несколько слов о БАДах

Сегодня не найти человека, который не слышал бы о биологически активных добавках (БАД). Фактически это комплексы биологически активных веществ различного состава, не являющиеся лекарственными средствами. Биологически активные добавки могут быть фармацевтическим продуктом – диетическими добавками, витаминными комплексами. Или же продуктами питания, дополнительно обогащенными активными компонентами, не содержащимися в данном продукте.

Мировой рынок биологически активных добавок сегодня огромен, но и россияне не отстают. Некоторые опросы показали, что этот продукт принимает каждый четвертый житель России. При этом 60 % потребителей используют его как дополнение к пище, 16 % - как источники витаминов и микроэлементов, а 5 % уверены, что биологически активные добавки являются лекарственными средствами. Кроме того, зарегистрированы и случаи, когда под видом биологически активных добавок как спортивного питания и средств для снижения веса продавались добавки, в которых были обнаружены психотропные вещества и наркотические средства.


Можно быть сторонником или противником приема данного продукта. Мировое мнение изобилует различными данными по этому вопросу. В любом случае здоровый образ жизни и разнообразное сбалансированное питание не повредит вашему организму, избавит от сомнений в отношении приема тех или иных пищевых добавок.

Накоплением знаний, анализом явлений и фактов занимается наука. Если в период своего зарождения наука была единой, неделимой и эта прекрасная, органически свойственная ей черта особенно ярко проявилась в энциклопедических трудах великих мыслителей древности, то позднее наступила пора дифференциации науки.

Из унитарной, стройной системы естествознания как единого целого возникли математика, физика, химия, биология и медицина , а в науках об обществе оформились история, философия, право ...

Это неизбежное дробление науки, отражающее объективные процессы в развитии мира, продолжается и сегодня - появились кибернетика, ядерная физика, химия полимеров, океанология, экология, онкология и десятки других наук.

Веянием времени стала и узкая специализация ученых , целых коллективов. Конечно, это отнюдь не исключает становления и воспитания широко образованных ученых с блестящей эрудицией, и мировая наука знает немало тому примеров.

И все же вопрос закономерен - не утрачивается ли в таком случае возможность осмысления целостной картины окружающего мира, не мельчает ли порой постановка проблем, не ограничиваются ли искусственно поиски путей их решения? Особенно для тех, кто только начинает свой путь к знаниям...

Отражением этого противоречия и прямым следствием действия законов диалектики явилось встречное движение наук по пути к взаимному обогащению, взаимодействию и интеграции .

Появились математическая лингвистика , химическая физика , биологическая химия ...

Что будет конкретным и конечным итогом этого непрерывного искания, постоянной смены целей и объектов исследования, предсказать пока трудно, но одно является очевидным - в конечном итоге человек достигнет прогресса и в тех областях знания, которые совсем недавно казались окутанными покровом глубокой тайны...

Одним из ярких примеров является та область науки, которая лежит на границе биологии и химии.

Что же объединяет эти научные дисциплины, в чем смысл их взаимодействия?

Ведь биология была и, пожалуй, еще долгое время будет одной из самых загадочных областей знания, и в ней остается немало белых пятен.

Химия же, напротив, относится к разряду наук наиболее устоявшихся, точных, в ней основные закономерности выяснены и проверены временем.

И тем не менее факт остается фактом - уже давно химия и биология идут навстречу друг другу.

Когда это началось, вряд ли можно сейчас установить... Попытки объяснения явлений жизнедеятельности с позиций точных наук мы находим еще у мыслителей древнегреческой и древнеримской цивилизации, более отчетливо подобные идеи формулировались в трудах выдающихся представителей научной мысли средневековья и эпохи Возрождения.

К концу XVIII в было достоверно установлено, что в основе проявления жизни лежа химические превращения веществ, порой простых, а зачастую удивительно сложных. И именно с этого периода начинается подлинная летопись о союзе двух наук, летопись, богатая ярчайшими фактами и эпохальными открытиями, фейерверк которых не прекращается и в наши дни...

На первых этапах в ней господствовали виталистические воззрения , утверждавшие, что химическиесоединения, выделяемые из живых организмов, не могут быть получены искусственным путем , без участия магической жизненнойсилы≫.

Сокрушительный удар сторонникам витализма был нанесенработами Ф. Вёлера, получившего типичное вещество животногопроисхождения - мочевину из цианата аммония . Последующимиисследованиями позиции витализма были окончательно подорваны.

В середине XIX в. органическая химия определяется уже как химия соединений углерода вообще - будь то вещества природного происхождения или синтетические полимеры, красители или лекарственные препараты.

Один за другим преодолевала органическая химия барьеры, стоящие на пути к познанию живой материи.

В 1842 г. Н. Н. Зинин осуществил синтез анилина, в 1854 г. М. Бертло получил синтезом ряд сложных органических веществ, в том числе жиры.

В 1861 г. А. М. Бутлеровым впервые было синтезировано сахаристое вещество - метиленитан, к концу столетия успешно осуществляются синтезы ряда аминокислот и жиров , а начало нашего века ознаменовалось первыми синтезами белковоподобных полипептидов .

Это направление, развивавшееся стремительно и плодотворно, оформилось к началу XX в. в самостоятельную химию природных соединений.

К числу ее блистательных побед можно отнести расшифровку строения и синтез биологически важных алкалоидов, терпеноидов, витаминов и стероидов, а вершинами ее достижений в середине нашего века надо считать полные химические синтезы хинина, стрихнина, резерпина, пенициллина и простагландинов.

Биологическими проблемами занимаются сегодня десятки наук, в которых тесно переплетаются идеи и методы биологии, химии, физики, математики и других областей знания.

Арсенал используемых биологией средств огромен. Именно в этом - один из источников ее бурного прогресса, основа достоверности ее выводов и суждений.

Пути биологии и химии в познании механизмов жизнедеятельности пролегают рядом, и это естественно, ибо живая клетка - настоящее царство больших и малых молекул, непрерывно взаимодействующих, возникающих и исчезающих...

Здесь находит сферу приложения и одна из новых наук - биоорганическая химия.

Биоорганическая химия - наука, которая изучает связь между строением органических веществ и их биологическими функциями.

Объектами изучения являются, такие как: биополимеры, витамины, гормоны, антибиотики, феромоны, сигнальные вещества, биологически активные вещества растительного происхождения, а также синтетические регуляторы биологических процессов (лекарственные препараты, пестициды и др.), биорегуляторы и отдельные метаболиты.

Являясь разделом (частью) органической химии эта наука также изучает соединения углерода.

В настоящее время насчитывается – 16 млн органических веществ.

Причины многообразия органических веществ:

1) Соединения атомов углерода (С) могут взаимодействовать друг с другом и другими элементами периодической системы Д. И. Менделеева. При этом образуются цепи и циклы.

2) Атом углерода может находиться в трех разных гибридных состояниях. Тетраэдрическая конфигурация атома С → плоскостная конфигурация атома С.

3) Гомология – это существование веществ с близкими свойствами, где каждый член гомологического ряда отличается от предыдущего на группу – СН 2 -.

4) Изомерия – это существование веществ, имеющих одинаковый качественный и количественный состав, но различное строение.

А) M. Бутлеров (1861 г.) создал теорию строения органических соединений, которая и по сей день служит научной основой органической химии.

Б) Основные положения теории строения органических соединений:

1) атомы в молекулах соединены друг с другом химическими связями в соответствии с их валентностью;

2) атомы в молекулах органических соединений соединяются между собой в определенной последовательности, что обусловливает химическое строение молекулы;

3) свойства органических соединений зависят не только от числа и природы входящих в их состав атомов, но и от химического строения молекул;

4) в молекулах существует взаимное влияние как связанных, так и непосредственно друг с другом не связанных атомов;

5) химическое строение вещества можно определить в результате изучения его химических превращений и, наоборот, по строению вещества можно охарактеризовать его свойства.

Итак, объектами изучения биоорганической химии являются:

1) биологически важные природные и синтетические соединения: белки и пептиды, нуклеиновые кислоты, углеводы, липиды,

2) биополимеры смешанного типа - гликопротеины, нуклеопротеины, липопротеины, гликолипиды и т. п.; алкалоиды, терпеноиды, витамины, антибиотики, гормоны, простагландины, ростовые вещества, феромоны, токсины,

3) а также синтетические лекарственные препараты, пестициды и др.

Биополимеры – высокомолекулярные природные соединения, которые являются основой всех организмов. Это белки, пептиды, полисахариды, нуклеиновые кислоты (НК), липиды.

Биорегуляторы – соединения, которые химически регулируют обмен веществ. Это витамины, гормоны, антибиотики, алкалоиды, лекарственные препараты и др.

Знание строения и свойств биополимеров и биорегуляторов позволяет познать сущность биологических процессов. Так, установление строения белков и НК позволило развить представления о матричном биосинтезе белка и роли НК в сохранении и передаче генетической информации.

Основная задача биоорганической химии – выяснение взаимосвязи структуры и механизма действия соединений.

Итак, из сказанного понятно, что биоорганическая химия – это научное направление, сложившееся на стыке ряда отраслей химии и биологии.

В настоящее время она превратилась в фундаментальную науку. По существу она является химическим фундаментом современной биологии.

Разрабатывая основополагающие проблемы химии живого мира, биоорганическая химия способствует решению задач получения практически важных препаратов для медицины, сельского хозяйства, ряда отраслей промышленности.

Основные задачи:

- выделение в индивидуальном состоянии изучаемых соединений с помощью кристаллизации, перегонки,различных видов хроматографии, электрофореза, ультрафильтрации, ультрацентрифугирования, противоточного распределения ит. п.;

- установление структуры, включая пространственное строение,на основе подходов органической и физико-органической химии сприменением масс-спектрометрии, различных видов оптическойспектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурногоанализа, ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и круговогодихроизма, методов быстрой кинетики и т. п. в сочетании с расчетами на ЭВМ;

- химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогови производных,- с целью подтверждения структуры, выяснения связи строения и биологической функции, получения практически ценных препаратов;

- биологическое тестирование полученных соединений in vitro и in vivo.

Решение основных проблем Б. х. важно для дальнейшего прогресса биологии. Без выяснения строения и свойств важнейших биополимеров и биорегуляторов нельзя познать сущность жизненных процессов, а тем более найти пути управления такими сложными явлениями, как:

Размножение и передача наследственных признаков,

Нормальный и злокачественный рост клеток,-

Иммунитет, память, передача нервного импульса и многое др.

В то же время изучение высокоспециализированных биологически активных веществ и процессов, протекающих с их участием, может открыть принципиально новые возможности для развития химии, химической технологии и техники.

К проблемам, решение которых связано с исследованиями в области Б. х., относятся:

Создание строго специфичных высокоактивных катализаторов (на основе изучения строения и механизма действия ферментов),

Прямое превращение химической энергии в механическую (на основе изучения мышечного сокращения),

Использование в технике химических принципов хранения и передачи информации, осуществляемых в биологических системах, принципов саморегулирования многокомпонентных систем клетки в первую очередь избирательной проницаемости биологических мембран, и многое др.

Перечисленные проблемы лежат далеко за пределами собственно Б. х.; однако она создает основные предпосылки для разработки этих проблем, обеспечивая главные опорные пункты для развития биохимических исследований, относящихся уже к области молекулярной биологии. Широта и важность решаемых проблем, разнообразие методов и тесная связь с другими научными дисциплинами обеспечили быстрое развитие Б. х.

Биоорганическая химия сформировалась в самостоятельную область в 50-х гг. 20 в.

В этот же период это направление начало делать первые шаги в Советском Союзе.

Заслуга в этом принадлежала академику Михаилу Михайловичу Шемякину.

Тогда ему оказали решительную поддержку руководители Академии наук А. Н. Несмеянов и Н. Н. Семенов, и уже в 1959 г. в системе АН СССР был создан базовый институт химии природных соединений АН СССР, который он возглавил с момента его создания (1959) до 1970 года. С 1970 по 1988 год, после смерти Михаила Михайловича Шемякина, институт возглавил его ученик и последователь академик Ю. А. Овчинников. «Развиваясь в недрах органической химии с самого начала ее зарождения как науки, она не только питалась и питается всеми представлениями органической химии, но и сама непрерывно обогащает последнюю новыми идеями, новым фактическим материалом принципиальной важности, новыми методами» – говорил академик, крупный ученый в области органической химии Михаил Михайлович Шемякин (1908-1970)»

В 1963 г. организовано Отделение биохимии, биофизики и химии физиологически активных соединений АН СССР. Соратниками М. М. Шемякина в этой деятельности, а порой и борьбе, были академики А. Н. Белозерский и В. А. Энгельгардт; уже в 1965 г. Академик А. Н. Белозерский основал Межфакультетскую лабораторию биоорганической химии МГУ, которая сейчас носит его имя.

Методы и с с л е д о в а н и я: основной арсенал составляют методы органической химии, однако для решения структурно-функциональных задач привлекаются и разнообразные физические, физико-химические, математические и биологические методы.

Аминокислоты (аминокарбо́новые кисло́ты ) - являются бифункциональными соединениями, которые содержат в молекуле две реакционноспособные группы: карбонильные (–СООН), аминогруппу (–NH 2), α-атом углерода (в центре) и радикал (различается у всех α-аминокислот).

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

Аминокислоты (кроме глицина) существуют в двух стереоизомерных формах – L и D, вращающих плоскость поляризации света соответственно влево и вправо.

Все живые организмы синтезируют и усваивают только L-аминокислоты, а D-аминокислоты для них либо безразличны, либо вредны. В естественных белках встречаются преимущественно α-аминокислоты, в молекуле которых аминогруппа присоединена к первому атому (α-атому) углерода; у β-аминокислот аминогруппа находится при втором атоме углерода.

Аминокислоты являются мономерами, из которых строятся полимерные молекулы – протеины, или белки.

Как уже отмечалось ранее, практически все природные α-аминокислоты оптически активны (за исключением глицина) и относятся к L-ряду. Это означает, что в проекции Фишера, если внизу расположить заместитель, а вверху карбоксильную группу, то аминогруппа будет находиться слева.

Это, разумеется, не означает, что все природные аминокислоты вращают плоскость поляризованного света в одну и ту же сторону, поскольку направление вращения определяется свойствами всей молекулы, а не конфигурацией его асимметрического атома углерода. Большая часть природных аминокислот имеет S-конфигурацию (в том случае, когда в ее состав входит один асимметрический атом углерода).

Некоторые микроорганизмы синтезируют аминокислоты D-ряда. Такие аминокислоты называют “неприродными”.

Конфигурацию протеиногенных аминокислот соотносят с D - глюкозой; такой подход предложен Э. Фишером в 1891 г. В пространственных формулах Фишера заместители у хирального С-2 атома занимают положение, которое соответствует их абсолютной конфигурации (это было доказано через 60 лет).

На рисунке приведены пространственные формулы D- и L-аланина.

Все аминокислоты, за исключением глицина, оптически активны благодаря хиральному строению.

Энантиомерные формы, или-оптические антиподы, имеют различные показатели преломления (круговое двулучепреломление) и различные коэффициенты молярной экстинкции (круговой дихроизм) для лево и право циркулярно поляризованных компонент линейно-поляризованного света. Они поворачивают плоскость колебаний линейного поляризованного света на равные углы, но в противоположных направлениях. Вращение происходит так, что обе световые составляющие проходят оптически активную среду с различной скоростью и при этом сдвигаются по фазе.

По углу вращения а, определенному на поляриметре, можно определить удельное вращение [a] D.

ИЗОМЕРИЯ АМИНОКИСЛОТ

1)Изомерия углеродного скелета

    Неспецифические метаболиты .

    Специфические метаболиты :

а). тканевые гормоны (парагормоны);

б). истинные гормоны.

Неспецифические метаболиты - продукты метаболизма, вырабатываемые любой клеткой в процессе жизнедеятельности и обладающие биологической активностью (СО 2 , молочная кислота).

Специфические метаболиты - продукты жизнедеятельности, вырабатываемые определенными специализированными видами клеток, обладающие биологической активностью и специфичностью действия:

а) тканевые гормоны - БАВ, вырабатывающиеся специализированными клетками, оказывают эффект в основном на месте выработки.

б) истинные гормоны - вырабатываются железами внутренней секреции

Участие БАВ на различных уровнях нейро-гуморальной регуляции:

I уровень : местная или локальная регуляция Обеспечивается гуморальными факторами: в основном - неспецифическими метаболитами ив меньшей степени - специфическими метаболитами (тканевыми гормонами).

II уровень регуляции : региональный (органный). тканевыми гормонами.

III уровень - межорганное, межсистемное регулирование. Гуморальная регуляция представлена железами внутренней секреции.

IV уровень. Уровень целостного организма. Нервная и гуморальная регуляция соподчинены на этом уровне поведенческой регуляции.

Регулирующее влияние на любом уровне определяется рядом факторов:

    количество биологически активного вещества;

2. количество рецепторов;

3. чувствительность рецепторов.

В свою очередь чувствительность зависит:

а). от функционального состояния клетки;

б). от состояния микросреды (рН, концентрация ионов и т.д.);

в). от длительности воздействия возмущающего фактора.

Местная регуляция (1 уровень регуляции)

Средой является тканевая жидкость. Основные факторы:

    Креаторные связи.

2. Неспецифические метаболиты .

Креаторные связи - обмен между клетками макромолекулами, несущими информацию о клеточных процессах, позволяющую клеткам ткани функционировать содружественно. Это один из наиболее эволюционно старых способов регуляции.

Кейлоны - вещества, обеспечивающие креаторные связи. Представлены простыми белками или гликопротеидами, влияющими на деление клеток и синтез ДНК. Нарушение креаторных связей может лежать в основе ряда заболеваний (опухолевый рост) а также процесса старения.

Неспецифические метаболиты - СО 2 , молочная кислота - действуют в месте образования на соседние группы клеток.

Региональная (органная) регуляция (2 уровень регуляции)

1. неспецифические метаболиты,

2. специфические метаболиты (тканевые гормоны).

Система тканевых гормонов

Вещество

Место выработки

Эффект

Сератонин

слизистая кишечника (энтерохромафинная ткань), головной мозг, тромбоциты

медиатор ЦНС, сосудосуживающий эффект, сосудисто-тромбоци­тар­ный гемостаз

Простаглан-дины

производное арахидоновой и линоленовой кислоты, ткани организма

Сосудодвигательное действие, и дилятаторный и констрикторный эффект, усиливает сокращения матки, усиливает выведение воды и натрия, снижает секрецию ферментов и HCl желудком

Брадикинин

Пептид, плазма крови, слюнные железы, легкие

сосудорасширяющее действие, повышает сосудистую проницаемость

Ацетилхолин

головной мозг, ганглии, нервно-мышечные синапсы

расслабляет гладкую мускулатуру сосудов, урежает сердечные сокращения

Гистамин

производное гистидина, желудок и кишечник, кожа, тучные клетки, базофилы

медиатор болевых рецепторов, расширяет микрососуды, повышает секрецию желез желудка

Эндорфины, энкефалины

головной мозг

обезболивающий и адаптивный эффекты

Гастроинтестинальные гормоны

вырабатываются в различных отделах ЖКТ

участвуют в регуляции процессов секреции, моторики и всасывания

Вещества (сокращено - БАВ) - это особые химические вещества, которые обладают при небольшой концентрации высокой активностью к определенным группам организмов (человек, растения, животные, грибы) или к определенным группам клеток. БАВ применяют в медицине и в качестве профилактики болезней, а также для поддержания полноценной жизнедеятельности.

Биологически активные вещества бывают:

1. Алкалоиды - азотсодержащие природы. Как правило, растительного происхождения. Обладают основными свойствами. Нерастворимы в воде, с кислотами образуют различные соли. Обладают хорошей физиологической активностью. В больших дозах - это сильнейшие яды, в малых - лекарства (медикаменты "Атропин", "Папаверин", "Эфедрин").

2. Витамины - особенная группа органических соединений, которые жизненно необходимы животным и человеку для хорошего метаболизма и полноценной жизнедеятельности. Многие из витаминов принимают участие в образовании нужных ферментов, тормозят или ускоряют активность определенных ферментных систем. Также витамины используются как к пище (входят в их состав). Некоторые витамины поступают в организм с пищей, другие образуются микробами в кишечнике, третьи - появляются в результате синтеза из жироподобных веществ под воздействием ультрафиолета. Недостаток витаминов может привести к различным нарушениям в обмене веществ. Болезнь, которая возникла в результате малого поступления витаминов в организм, называют авитаминозом. Недостаток - а чрезмерное количество - гипервитаминоз.

3. Гликозиды - соединения органической природы. Обладают самым разнообразным воздействием. Молекулы гликозидов состоят из двух важных частей: несахаристой (агликона или генина) и сахаристой (гликон). В медицине используют для лечения заболеваний сердца и сосудов, как противомикробное и отхаркивающее средство. Также гликозиды снимают усталость умственную и физическую, дезинфицируют мочевые пути, успокаивают ЦНС, улучшают пищеварение и повышают аппетит.

4. Гликолалкалоиды - биологически активные вещества, родственные гликозидам. Из них можно получить следующие лекарственные препараты: "Кортизон", "Гидрокортизон" и другие.

5. (другое название - таниды) способны осаждать белки, слизи, клеевые вещества, алкалоиды. По этой причины они несовместимы с этими веществами в лекарствах. С белками они образуют альбуминаты (противовоспалительное средство).

6. Масла жирные - это жирных кислот или спирта трехатомного. Некоторые жирные кислоты участвуют в выведение из организма холестерина.

7. Кумарины - это биологически активные вещества, в основе которых лежит изокумарин или кумарин. В эту же группу относят пиранокумарины и фурокумарины. Некоторые кумарины обладают спазмолитическим действием, другие проявляют капилляроукрепляющую активность. Также существуют кумарины противоглистного, мочегонного, курареподобного, противомикробного, обезболивающего и иного действия.

8. Микроэлементы, как и витамины, тоже добавляются в биологически активные пищевые добавки. Они входят в состав витаминов, гормонов, пигментов, ферментов, образуют химические соединения с белками, накапливаются в тканях и органах, в железах эндокринных. Для человека важны следующие микроэлементы: бор, никель, цинк, кобальт, молибден, свинец, фтор, селен, медь, марганец.

Существуют и другие биологически активные вещества: (бывают летучие и нелетучие), пектиновые вещества, пигменты (другое название - красящие вещества), стероиды, каротиноиды, флавоноиды, фитонциды, экдизоны, эфирные масла.