Мониторинг солнечной активности в реальном времени. Проявления солнечной активности на земле

Солнечная активность – это совокупность явлений, периодически возникающих в солнечной атмосфере. Проявления солнечной активности связаны с магнитными свойствами солнечной плазмы.

Что же вызывает возникновение солнечной активности? Постепенно увеличивается магнитный поток в одной из областей фотосферы. Затем здесь увеличивается яркость в линиях водорода и кальция. Такие области называются флоккулами .

Примерно в тех же участках на Солнце в фотосфере (т.е. несколько глубже) при этом также наблюдается увеличение яркости в белом (видимом) свете. Это явление называется факелами .

Увеличение энергии, выделяющееся в области факела и флоккула – следствие увеличившейся напряженности магнитного поля.
Через 1-2 дня после появления флоккула в активной области возникают солнечные пятна в виде маленьких черных точек – пор. Многие из них вскоре исчезают, лишь отдельные поры за 2-3 дня превращаются в крупные темные образования. Типичное солнечное пятно имеет размеры в несколько десятков тысяч километров и состоит из темной центральной части (тени) и волокнистой полутени.

Из истории изучения солнечных пятен

Первые сообщения о пятнах на Солнце относятся к наблюдениям 800 г. до н. э. в Китае, первые рисунки относятся к 1128 г. В 1610 г. астрономы начали использовать телескоп для наблюдения Солнца. Первоначальные исследования касались в основном природы пятен и их поведения. Но, несмотря на исследования, физическая природа пятен оставалась неясной до XX века. К XIX веку уже имелся достаточно продолжительный ряд наблюдений числа пятен, чтобы определить периодические циклы в активности Солнца. В 1845 г. профессора Д. Генри и С. Александер из Принстонского университета наблюдали Солнце с помощью термометра и определили, что пятна излучают меньше радиации по сравнению с окружающими областями Солнца. Позже было определено излучение выше среднего в областях факелов.

Характеристика солнечных пятен

Самая главная особенность пятен – наличие в них сильных магнитных полей , достигающих наибольшей напряженности в области тени. Представьте себе выходящую в фотосферу трубку силовых линий магнитного поля. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе. Поэтому вокруг тени магнитные силовые линии принимают направление, близкое к горизонтальному. Магнитное поле как бы расширяет пятно изнутри и подавляет конвективные движения газа, переносящие энергию из глубины вверх. Поэтому в области пятна температура оказывается меньше примерно на 1000 К. Пятно является как бы охлажденной и скованной магнитным полем ямой в солнечной фотосфере.
Чаще всего пятна возникают целыми группами, но в них выделяются два больших пятна. Одно, небольшое, - на западе, а другое, поменьше, - на востоке. Вокруг них и между ними часто бывает множество мелких пятен. Такая группа пятен называется биполярной, потому что у больших пятен всегда противоположная полярность магнитного поля. Они как бы связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из-под фотосферы, оставив концы где-то в глубоких слоях, увидеть их невозможно. Пятно, из которого выходит магнитное поле из фотосферы, имеет северную полярность, а то, в которое силовое поле входит обратно под фотосферу – южную.

Солнечные вспышки – самое мощное проявление солнечной активности. Они происходят в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. Проще говоря, вспышки – это взрыв, вызванный внезапным сжатием солнечной плазмы . Сжатие происходит под давлением магнитного поля и приводит к образованию длинного плазменного жгута в десятки и даже сотни тысяч километров. Количество энергии взрыва – от 10²³ Дж. Источник энергии вспышек отличается от источника энергии всего Солнца. Ясно, что вспышки имеют электромагнитную природу. Энергия, излучаемая вспышкой в коротковолновой области спектра, состоит из ультрафиолетовых и рентгеновских лучей.
Как и всякий сильный взрыв, вспышка порождает ударную волну, которая распространяется вверх в корону и вдоль поверхностных слоев солнечной атмосферы. Излучение солнечных вспышек оказывает особенно сильное воздействие на верхние слои земной атмосферы и ионосферу. В результате этого происходит целый комплекс геофизических явлений на Земле.

Протуберанцы

Наиболее грандиозными образованиями в солнечной атмосфере являются протуберанцы . Это плотные облака газов, возникающие в солнечной короне или выбрасываемые в нее из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями и потоками более плотного, чем корона, вещества. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Отдельные протуберанцы движутся с еще большими скоростями и внезапно взрываются; они называются эруптивными. Размеры протуберанцев могут быть разными. Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км.
Имеется множество типов протуберанцев. На фотографиях хромосферы в красной спектральной линии водорода протуберанцы хорошо видны на диске Солнца в виде темных длинных волокон.

Области на Солнце, в которых наблюдаются интенсивные проявления солнечной активности, называются центрами солнечной активности. Общая активность Солнца периодически меняется. Существует множество способов оценивать уровень солнечной активности. Индекс солнечной активности – числа Вольфа W. W= k (f+10g), где k – коэффициент, учитывающий качество инструмента и производимых с его помощью наблюдений, f – полное число пятен, наблюдаемых в данный момент на Солнце, g – удесятеренное число групп, которые они образуют.
Эпоху, когда количество центров активности наибольшее, считают максимумом солнечной активности. А когда их совсем или почти нет – минимумом. Максимумы и минимумы чередуются в среднем с периодом 11 лет – одиннадцатилетний цикл солнечной активности.

Влияние солнечной активности на жизнь на Земле

Влияние это очень велико. Первым это влияние начал исследовать А.Л.Чижевский в июне 1915 г. Северные полярные сияния наблюдались в России и даже в Северной Америке, а «магнитные бури непрерывно нарушали движение телеграмм». В этот период ученый обращает внимание на то, что повышенная солнечная активность совпадает с кровопролитием на Земле. И действительно, сразу после появления больших пятен на Солнце на многих фронтах Первой мировой усилились военные действия. Он посвятил этим исследованиям всю свою жизнь, но его книга «В ритме Солнца» осталась недописанной и вышла только в 1969 г., через 4 года после смерти Чижевского. Он обратил внимание на связь между увеличением солнечной активности и земными катаклизмами.
Поворачиваясь к Солнцу то одним, то другим своим полушарием, Земля получает энергию. Этот поток можно представить в виде бегущей волны: там, где падает свет - ее гребень, где темно – провал: энергия то прибывает, то убывает.
Магнитные поля и потоки частиц, которые идут от солнечных пятен, достигают Земли и влияют на мозг, сердечно-сосудистую и кровеносную системы человека, на его физическое, нервное и психологическое состояние. Высокий уровень солнечной активности, его быстрые изменения возбуждают человека.

Сейчас влияние солнечной активности на Землю изучается очень активно. Появились новые науки - гелиобиология, солнечно-земная физика, - которые исследуют взаимосвязь жизни на Земле, погоды, климата с проявлениями солнечной активности.
Астрономы говорят, что Солнце становится все более ярким и жарким. Это связано с тем, что за последние 90 лет активность его магнитного поля увеличилась более чем вдвое, причем наибольший рост произошел за последние 30 лет. Сейчас ученые могут предсказывать солнечные вспышки, что дает возможность заблаговременно подготовиться к возможным сбоям в работе радио- и электросетей.

Сильная солнечная активность может привести к тому, что на Земле выйдут из строя линии электропередач, изменятся орбиты спутников, которые обеспечивают работу систем связи, "направляют" самолеты и океанские лайнеры. Солнечное "буйство" обычно характеризуется мощными вспышками и появлением множества пятен. Чижевский установил, что в период повышенной солнечной активности (большого количества пятен на Солнце) на Земле происходят войны, революции, стихийные бедствия, катастрофы, эпидемии, увеличивается интенсивность роста бактерий («эффект Чижевского - Вельховера»). Вот что он пишет в своей книге «Земное эхо солнечных бурь»: «Бесконечно велико количество и бесконечно разнообразно качество физико-химических факторов окружающей нас со всех сторон среды - природы. Мощные взаимодействующие силы исходят из космического пространства. Солнце, Луна, планеты и бесконечное число небесных тел связаны с Землею невидимыми узами. Движение Земли управляется силами тяготения, которые вызывают в воздушной, жидкой и твердой оболочках нашей планеты ряд деформаций, заставляют их пульсировать, производят приливы. Положение планет в солнечной системе влияет на распределение и напряженность электрических и магнитных сил Земли.
Но наибольшее влияние на физическую и органическую жизнь Земли оказывают радиации, направляющиеся к Земле со всех сторон Вселенной. Они связывают наружные части Земли непосредственно с космической средой, роднят ее с нею, постоянно взаимодействуют с нею, а потому и наружный лик Земли, и жизнь, наполняющая его, являются результатом творческого воздействия космических сил. А потому и строение земной оболочки, ее физико-химия и биосфера являются проявлением строения и механики Вселенной, а не случайной игрой местных сил. Наука бесконечно широко раздвигает границы нашего непосредственного восприятия природы и нашего мироощущения. Не Земля, а космические просторы становятся нашей родиной, и мы начинаем ощущать во всем ее подлинном величии значительность для всего земного бытия и перемещения отдаленных небесных тел, и движения их посланников - радиации...»
В 1980 году появилась методика, позволяющая обнаруживать наличие пятен в фотосферах других звезд. Оказалось, что у многих звезд спектрального класса G и К есть пятна, сходные с солнечными, с магнитным полем того же порядка. Зарегистрированы и изучаются циклы активности таких звезд. Они близки к солнечному циклу и составляют 5 - 10 лет.

Существуют гипотезы о влиянии изменений физических параметров Солнца на климат Земли.

Земные полярные сияния являются видимым результатом взаимодействия солнечного ветра, солнечной и земной магнитосфер и атмосферы. Экстремальные явления, связанные с солнечной активностью, приводят к значительным возмущениям магнитного поля Земли, что становится причиной геомагнитных бурь. Геомагнитные бури являются одним из важнейших элементов космической погоды и влияют на многие области деятельности человека, из которых можно выделить нарушение связи, систем навигации космических кораблей, возникновения вихревых индукционных токов в трансформаторах и трубопроводах и даже разрушение энергетических систем.
Магнитные бури также влияют на здоровье и самочувствие людей. Раздел биофизики, изучающий влияние изменений активности Солнца и вызываемых ею в земной магнитосфере возмущений на земные организмы, называется гелиобиологией .

Чтобы в будущем не пропускать вспышки на Солнце, и последующие за ними полярные сияния, добавляю информацию о солнечной активности в реальном времени. Для обновления информации перезагрузите страницу.

Солнечные вспышки

На графике представлен общий поток рентгеновского излучения Солнца получаемый со спутников серии GOES в режиме реального времени. Солнечные вспышки видны в виде всплесков интенсивности. Во время мощных вспышек происходят нарушения радиосвязи в ВЧ диапазоне на дневной стороне Земли. Степень этих нарушений зависит от мощности вспышки. Балл (C,M,X) вспышек и их мощность в Вт/м 2 указаны на левой оси координат в логарифмическом масштабе. Вероятный уровень нарушений радиосвязи по шкале NOAA (R1-R5) показан справа. На графике — развитие событий в октябре 2003г.

Солнечные космические лучи (всплески радиации)

Минут через 10-15 после мощных солнечных вспышек к Земле приходят протоны высоких энергий — > 10 Мэв или так называемые солнечные космические лучи (СКЛ). В западной литературе — High energy proton flux and Solar Radiation Storms т.е. поток протонов высоких энергий или солнечная радиационная буря. Этот радиационный удар может вызывать нарушения и поломки в аппаратуре космических аппаратов, приводить к опасному облучению космонавтов и получению повышенной дозы радиации пассажирами и экипажами реактивных самолётов на высоких широтах.

Индекс геомагнитной возмущенности и магнитные бури

Усиление потока солнечного ветра и приход ударных волн корональных выбросов вызывают сильные вариации геомагнитного поля — магнитные бури. По данным, поступающим с космических аппаратов серии GOES, в режиме реального времени вычисляется уровень возмущённости геомагнитного поля, который и представлен на графике.

Ниже индекс протонов

Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

Максимально ожидаемый значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

Значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

1 2 3 4 5 6 7 8 9 10 >10
низкий умеренный сильный очень сильный экстремальный
Данные значения УФ-индекса по планете Данные комплексного мониторинга в г.Томске

Компоненты магнитного поля

Зависимости вариаций компонент магнитного поля в гаммах от местного времени.

Местное время выражено в часах Томского летнего декретного времени (ТЛДВ). ТЛДВ=UTC+7часов.

Ниже представлен уровень возмущённости геомагнитного поля в К-индексах.

Вспышки на Солнце по данным спутника GOES-15

NOAA / Space Weather Prediction Center

Поток протонов и электронов взяты из GOES-13 GOES Hp, GOES-13 и GOES-11

Solar X-ray Flux

Вспышки на Солнце

На шкале существует пять категорий (по возрастанию мощности): A, B, C, M и X. Помимо категории каждой вспышке присваивается некоторое число. Для первых четырех категорий это число от нуля до десяти, а для категории X — от нуля и выше.

HAARP феррозонд (магнитометр)

«Компонент H» (черный след) положителен магнитный север,
«Компонент D» (красный след) положителен Восток,
«Компонент Z» (синий след) положителен вниз

Подробнее: http://www.haarp.alaska.edu/cgi-bin/magnetometer/gak-mag.cgi

График GOES Hp содержит 1-минутные усредненные параллельные компоненты магнитного поля в наноТеслах (nanoTeslas — nT) измеряемый GOES-13 (W75) и GOES-11 (W135).

Примечание: Время на картинках указано североатлантическое, то есть относительно
московского времени нужно отнять 7 часов (GMT-4:00)
Источники информации:
http://sohowww.nascom.nasa.gov/data/realtime-images.html
http://www.swpc.noaa.gov/rt_plots/index.html

Активность солнца в реальном времени

Здесь представлено моделирование солнечной активности в реальном времени. Обновление изображений происходит раз в 30 минут. Возможно периодическое отключение датчиков и камер на спутниках в виду технических неисправностей.

Изображение Солнца в реальном времени(онлайн).

Ультрафиолетовый телескоп, яркие пятна соответствуют 60-80 тыс. градусам по Кельвину. Спутник SOHO LASCO C3

Изображение короны солнца в реальном времени(онлайн). Характеристики Солнца

Расстояние до Солнца : 149.6 млн. км = 1.496· 1011 м = 8.31 световая минута

Радиус Солнца : 695 990 км или 109 радиусов Земли

Масса Солнца : 1.989 · 1030 кг = 333 000 масс Земли

Температура поверхности Солнца : 5770 К

Химический состав Солнца на поверхности : 70% водорода (H), 28% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Температура в центре Солнца : 15 600 000 К

Химический состав в центре Солнца : 35% водорода (H), 63% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Солнце — основной источник энергии на Земле.
Основные характеристики
Среднее расстояние от Земли 1,496×10 11 м
(8,31 световых минут)
Видимая звёздная величина (V) -26,74 м
Абсолютная звёздная величина 4,83 м
Спектральный класс G2V
Параметры орбиты
Расстояние от центра Галактики ~2,5×10 20 м
(26 000 световых лет)
Расстояние от плоскости Галактики ~4,6×10 17 м
(48 световых лет)
Галактический период обращения 2,25-2,50×10 8 лет
Скорость 2,17×10 5 м/с
(на орбите вокруг центра Галактики)
2×10 4 м/с
(относительно соседних звёзд)
Физические характеристики
Средний диаметр 1,392×10 9 м
(109 диаметров Земли)
Экваториальный радиус 6,955×10 8 м
Длина окружности экватора 4,379×10 9 м
Сплюснутость 9×10 -6
Площадь поверхности 6,088×10 18 м 2
(11 900 площадей Земли)
Объём 1,4122×10 27 м 2
(1 300 000 объёмов Земли)
Масса 1,9891×10 30 кг
(332 946 масс Земли)
Средняя плотность 1409 кг/м 3
Ускорение на экваторе 274,0 м/с 2
(27,94 g)
Вторая космическая скорость (для поверхности) 617,7 км/с
(55 земных)
Эффективная температура поверхности 5515 C°
Температура короны ~1 500 000 C°
Температура ядра ~13 500 000 C°
Светимость 3,846×10 26 Вт
~3.75×10 28 Лм
Яркость 2,009×10 7 Вт/м 2 /ср
Характеристики вращения
Наклон оси 7,25°(относительно плоскости эклиптики)
67,23°(относительно плоскости Галактики)
Прямое восхождение северного полюса 286,13°
(19 ч 4 мин 30 с)
Склонение северного полюса +63,87°
Скорость вращения внешних видимых слоёв (на экваторе) 7284 км/ч
Состав фотосферы
Водород 73,46 %
Гелий 24,85 %
Кислород 0,77 %
Углерод 0,29 %
Железо 0,16 %
Сера 0,12 %
Неон 0,12 %
Азот 0,09 %
Кремний 0,07 %
Магний 0,05 %


Мы сможем увидеть то, что происходит сейчас в космосе. Иногда, фото появляется на нашем портале через считанные минуты, после того, как сработал затвор камеры во Вселенной. А это означает, что перед этим изображение успело преодолеть… полтора миллиона километров. Именно на таком расстоянии находятся спутники.

Трансляцию изображений Солнца начнем с нового современного космического телескопа. Изображения эти — удивительные. Благодаря двум американским спутникам близнецам STEREO мы можем увидеть невидимое. То есть ту сторону звезды, которая скрыта от наблюдения с Земли.

На приведенной схеме видно, что спутники-обсерватории A и B позволяют наблюдать Солнце с противоположных сторон. Изначально было запланировано, что со временем их орбиты разойдутся так, что мы сможем увидеть Солнце не просто сбоку, а полностью с обратной стороны. И в феврале 2011 года это произошло.

То что мы можем видеть прямо сейчас — похоже на фантастику. Почти в реальном времени наблюдаем скрытую жизнь космоса. Его тайну. И нам никогда не помешают в этом облака, тучи и другие атмосферные явления. Космос — идеальное место для подобных наблюдений. Кстати, непонятного здесь для ученых — 90 процентов из всех происходящих явлений. В том числе и в поведении ближайшей к нам звезды. Может, именно Вы поможете сделать основопологающие разгадки?

Смотрите: вот оно — наше Солнце (на снимке — ниже) , скромно спрятанное за «заглушкой», чтобы не производить засветку изображения. Широкоугольный объектив позволяет сделать обзор на сотни тысяч километров вокруг. Сделано это специально для того, чтобы мы могли видеть солнечную корону.

Трансляция этого изображения ведется со спутника STEREO B. Время на изображении указано по Гринвичу.

Время GMT (Гринвич): Если происходят выбросы в сторону Земли, то их направленность будет исходить к правому краю. Именно такие яркие лучистые сполохи и представляют опасность для нас — землян. Иногда, ученые пишут наспех электронным пером подсказки на изображении. Извещая нас о появлении в кадре какой-нибудь кометы или планеты. Выше — следующая «картинка» со спутника STEREO B, c маркировкой — behind_euvi_195, — но теперь уже с видом непосредственно на само Солнце. Мы наблюдаем: есть ли активность на невидимой стороне? В зависимости от местоположения сполохов по правому краю можно будет самим прогнозировать их быстроту появления на видимой стороне. Напомним, что поверхностные слои Солнца делают полный оборот около 25 суток. Вращение происходит слева направо. Зеленоватый цвет изображения появляется потому, что телескоп отображает атмосферу Солнца в определенном диапазоне волн. В данном случае — 195 А (Ангстрем). Мы «заглядываем» в температурный слой звезды на уровне около полутора миллионов градусов Цельсия. А вот на следующем изображении (ниже) — можем разглядеть более поверхностный слой, нагретый до 80 000°С Но это мы уже видим трансляцию с другого удивительного телескопа — космической обсерватории SDO. Она была запущена в космос в 2010 году. Главная ее цель — исследование динамических процессов на Солнце.

SDO транслирует изображения очень оперативно. Вы это сами можете видеть по маркировке всемирного времени на снимке. Примечательно, что взгляд этой обсерватории на Солнце точно совпадает с тем, каким мы сами видим его с Земли. Именно с этой стороны и «выстреливают» в нас опаснейшие протуберанцы и приходят магнитные бури. А образуются они, в большинстве случаев, в темных областях — пятнах. Их обширное появление — тревожный знак магнитной неспокойности. Это означает, что на Земле может произойти магнитная буря. И именно транслируемое изображение ниже позволяет нам наблюдать за ее предвестниками — пятнами.

Появились пятна — уделите более пристальное внимание своему здоровью. Доказано, что магнитным бурям подвержены абсолютно все люди. Но у одних — защитные механизмы срабатывают лучше, у других — хуже. Причины такой разницы ученым непонятны.

КАК ВЕСТИ СЕБЯ ВО ВРЕМЯ МАГНИТНЫХ БУРЬ?

Обобщающий совет врача-терапевта Мирославы БУЗЬКО:

ВПЕРВЫЕ! На нашем портале начата прямая трансляция с Международной космической станции: жизнь космонавтов, служебные переговоры, стыковки, виды Земли в реальном времени .

Кстати, неспокойная геомагнитная обстановка, создаваемая на Земле Солнцем, наиболее актуальна для тех, кто живет поближе к Северу. Это вызвано строением нашей планеты и ее положением в космосе. Территориально больше всего достается солнечных бурь — России (Сибирь и Европейский Север), США (Аляска) и Канаде.

Напомним, что солнечные изображения появляются на портале с временной задержкой, необходимой на их передачу с космической обсерватории и обработку для показа. Все проделывается в автоматическом режиме.

Если Вы видите на изображении или искаженную «картинку» — это означает, что произошел технический сбой. Иногда, в этом может быть само Солнце, которое в очередной раз выплеснуло на окружающих свою гигантскую энергию: А выбросы эти могут очень серъезно угрожать нашей цивилизации. Большая часть современных электронных устройств не защищены от воздействия аномальных солнечных излучений. Они могут выйти из строя моментально.

О нынешнем неблагоприятном прогнозе активности Солнца и о причинах, которые могут сильно разрушить земную инфраструктуру, напомним, можете прочитать в материале «Ахиллесова пята нового века»

Наблюдайте за жизнью настоящей Звезды! От нее реально зависит наша с Вами жизнь:

(Трансляция обеспечивается благодаря открытости в предоставлении информации со стороны космических агентств ЕС и NASA)

Иформер воздействия Солнца

Показаны средние прогнозные значения глoбaльного геомагнитного индекса Кр, на основе геофизических данных с двенадцати обсерваторий мира, собранных Службой Солнца SWPC NOAA. Данные нижеприведенного прогноза обновляются ежедневно. Кстати, Вы можете легко убедиться, что ученые почти не умеют прогнозировать солнечные события. Достаточно сравнить их предсказания с реальной ситуацией. Сейчас прогноз на три дня выглядит следующим образом:

Кр-индекс — характеризует общепланетарное геомагнитное поле, то есть — в масштабах всей Земли. По каждому дню показаны восемь значений — на каждый трёхчасовой интервал времени, в течении суток (0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, 21-00 часов). Время указано московское (msk)

Вертикальные линии ЗЕЛЕНОГО цвета (I ) — безопасный уровень геомагнитной активности.

Вертикальные линии КРАСНОГО цвета (I ) — магнитная буря (Kp>5). Чем выше красная вертикальная линия, тем сильнее буря. Уровень, с которого вероятны заметные влияния на здоровье метеочувствительных людей (Kp=7) отмечен горизонтальной линией красного цвета.

Ниже вы можете видеть реальное отображение геомагнитного воздействия Солнца. По шкале значений Kp-индекса определяйтесь со степенью его опасности для вашего здоровья. Цифра выше 4-5 единиц означает наступление магнитной бури. Отметим, что в данном случае, на графике оперативно отображается уровень солнечного излучения уже достигшего Земли. Эти данные фиксируются и выдаются каждые три часа несколькими станциями слежения в США,
Канаде и Великобритании. А сводный результат мы видим благодаря Центру космических прогнозов (NOAA/Space Weather Prediction Center)

ВАЖНО! Учитывая, что опасный выброс солнечной энергии достигает Земли не ранее, чем через сутки, вы сами, с учетом оперативных изображений Солнца, транслируемых выше, сможете заранее подготовться к неблагоприятному воздействию, уровень которого отображается ниже.

Индекс геомагнитной возмущенности и магнитные бури

Индекс Kp определяет степень геомагнитной возмущенности. Чем выше индекс Kp тем возмущения больше. Kp < 4 — слабые возмущения, Kp > 4 — сильные возмущения.

Обозначение информера солнечного воздействия

Рентгеновское излучение Солнца*

Normal : Обычный солнечный рентгеновский поток.

Active : Возросшее солнечное рентгеновское излучение.

С развитием космических технологий, можно наблюдать за активностью нашей звезды уже в режиме онлайн

Здесь Вы сможете смотреть за нашей космической погодой онлайн, которая в основном зависит от активности нашей звезды. Данные поступают напрямую со спутника SDO и обновляются очень часто , поэтому Вы можете всегда узнать точное состояние активности нашего Солнца и космической погоды.

Данные представленные ниже получены инструментом AIA установленном на космическом аппарате Solar Dynamics Observatory (SDO) и предназначены для получения качественных изображений короны. Снимки охватывают как минимум 1,3 солнечных диаметров в нескольких длинах волн, с разрешением около 1 угловой секунде.

Основная цель инструмента AIA — значительно улучшить наше понимание физики Солнечной атмосферы, которая формирует космическую погоду. Инструмент AIA производит данные, необходимые для количественного изучения корональных магнитных полей и плазмы. Он обеспечивает новое понимание наблюдаемых процессов и, в конечном счете, развивает передовые инструменты прогнозирования, необходимые для всех нас

Ниже приведены снимки активности Солнца сегодня онлайн в режиме реального времени

Длина волны 193 ангстрем (охватывает корону), что соответствует температуре порядка 1,2 млн. градусов.

Состояние космической погоды в Солнечной системе зависит от нашего светила. Потоки ионизированной плазмы, жесткое излучение и вспышки, солнечный ветер, это главные параметры.

Длина волны 171 ангстрем (охватывает спокойную корону), что соответствует температуре порядка 0,6 млн. градусов.

Длина волны 94 ангстрем (горячая корона), что соответствует температуре порядка 6,3 млн. градусов.

Длина волны 304 ангстрем (охватывает переходный слой и хромосферу), что соответствует температуре порядка 50 000 градусов.

Длина волны 4500 ангстрем (фотосфера), что соответствует температуре порядка 5000 градусов.

Длина волны 1600 ангстрем (переходный слой и верхняя фотосфера), что соответствует температуре порядка 5000 градусов.

Онлайн график активности космической погоды

Содержит следующие параметры: график протонов (данные со спутника GOES-13), электронов, а также данные по магнитному полю вблизи Земли и магнитным бурям (нижняя часть изображения). Обновление каждые 5 минут.

Параметры Солнечного ветра и магнитного поля около Земли

На схеме внизу показаны данные по солнечному ветра и магнитному полю. Обновление раз в 15-20 минут. На них отлично видно скорость солнечного ветра и другие параметры в околоземном пространстве.

Состояние солнечной активности сегодня

(красный — экстремальный, жёлтый [-50 nT > Dst > -100 nT] — повышенный, зелёный [-20 nT > Dst > -50 nT] — средний, синий — низкий)

Чёрная стрелка указывает текущее значение солнечной активности на сегодня.

Определяющее значение в системе Солнце – Земля играют неустойчивости, возникающие в условиях сильного отклонения от равновесия. Так как земная атмосфера стратифицирована по высоте, в поле тяготения она находится в неустойчивом равновесии. Изменение потока солнечной плазмы может вызывать достаточно сильное отклонение от равновесия, что приведет к дополнительному возникновению неустойчивости в целом ряде процессов в атмосфере Земли. Солнечная активность выступает как своего рода «спусковой крючок», дающий толчок развитию различных неустойчивостей.

Специфическими особенностями турбулентности в атмосфере является широкий спектр масштабов турбулентных неоднородностей (от мм до тыс. км) и существенное влияние вертикального распределения плотности на развитие мелкомасштабной турбулентности. Важную роль при формировании структуры турбулентности играют различного рода неустойчивости, присущие движущимся воздушным массам. В условиях сильно развитой турбулентности в атмосфере глобальная циркуляция воздуха также становится нестабильной. Возникают вихри, охватывающие пространство в тысячи километров и распадающиеся, в конце-концов, на более мелкие (от см до мм). При мелких размерах вихрей вязкость подавляет турбулентные флуктуации. Все течения в атмосфере, так или иначе связанные с конвекцией, оказываются не только сложными, но и неустойчивыми даже относительно слабых внешних возмущений.

Общая циркуляция атмосферы.

Основными факторами, влияющими на формирование климата Земли, является солнечная радиация, циркуляция атмосферы и характер подстилающей поверхности. Под их совместным влиянием происходит формирование климатических зон земного шара. Количество поступающего солнечного тепла зависит от ряда факторов. Определяющим является угол падения солнечных лучей. Поэтому на низких географических широтах поступает значительно больше солнечной энергии, чем на средних и тем более высоких широтах. Общей циркуляцией атмосферы называют замкнутые течения воздушных масс, происходящие в масштабах полушария или всего земного шара и приводящие к широтному и меридиональному переносу вещества и энергии в атмосфере. Главная причина возникновения воздушных течений в атмосфере – неравномерное распределение тепла на поверхности Земли, что приводит к неодинаковому нагреванию почвы и воздуха в различных поясах земного шара, поэтому солнечная энергия является первопричиной всех движений в воздушной оболочке Земли. Кроме притока солнечной энергии, к важнейшим факторам, вызывающим возникновение ветра, относятся вращение Земли вокруг своей оси, неоднородность подстилающей поверхности и трение воздуха о почву. В земной атмосфере наблюдаются воздушные движения самых различных масштабов – от десятков и сотен метров (местные ветры) до сотен и тысяч километров (циклоны, антициклоны, муссоны, пассаты, планетарные фронтальные зоны). В одной старинной книге так описывается циркуляция в атмосфере: «Экватор, словно горячий паровой котел. Белые шапки полюсов там – холодильники. А топка – это Солнце. Лучистое солнечное тепло нагревает котел – воздух экватора. Нагретый воздух поднимается и течет к холодильникам, там остывает и, опускаясь, течет понизу к экватору. Так над Землей вращается огромное воздушное колесо, которое приводит в ход Солнце». Это первое кольцо планетарной циркуляции. Однако вращение Земли отклоняет эти движущиеся массы вправо в северном полушарии, и влево – в южном. В итоге воздух течет не на север, а на северо-восток и где-то на уровне 30 градусов от экватора идет уже не по меридиану, а по широте с запада на восток. Накопление воздуха в районе 30 градуса широты в обоих полушариях приводит к образованию пояса повышенного давления над поверхностью Земли. От этого пояса воздух растекается в обе стороны, отклоняясь под действием сил Кориолиса. Часть воздушных масс, охлаждаясь, поворачивает назад – к экватору и движется в северо-восточном направлении. Такие воздушные потоки называются пассатами, они замыкают второе кольцо циркуляции атмосферы, кольцо пассатов. Другие массы идут дальше на север, но сила Кориолиса отклоняет их вправо. Здесь образуется система юго-западных и западных ветров, преобладающих в умеренных широтах. У северного полюса воздух, охлаждаясь, опускается вниз и растекается к югу, у южного – к северу,. при этом ветер приобретает направление с востока на запад. При встрече с воздухом умеренных широт происходит подъем этих воздушных масс. Так замыкается третье кольцо движения воздушных масс. Это очень упрощенная, устаревшая картина планетарной циркуляции, содержащая только три замкнутых кольца. В природе, однако, эти кольца связаны в единый механизм. Реальные ветры часто меняют свои маршруты. Экваториальный воздух иногда прорывается через пассатное кольцо и добирается до полюса. На средиземноморском побережье из-за затока арктического воздуха весной бывает так холодно, что замерзают сады. Кроме того, подстилающая поверхность Земли отличается большим разнообразием – материки, океаны и т.п. Каждый материк летом очень быстро нагревается, а зимой выхолаживается. Значит в «кухне планеты» есть и другие «котлы» и «холодильники», которые работают по-разному в каждом сезоне. Зимой материк – холодильник, а океан – котел, летом наоборот. Так в сложный круговорот воздуха вливается еще и колесо муссонов, которое летом вращается в одну сторону, а зимой – в другую.

Современные принципы классификации форм атмосферной циркуляции северного полушария Вангенгейма – Гирса.

Воздушные массы постоянно перемещаются вокруг земного шара. На скорость их движения оказывает влияние неравномерность поступления солнечной радиации и поглощение ее различными участками подстилающей поверхности и атмосферы, вращение Земли, термическое и динамическое взаимодействие атмосферы с подстилающей поверхностью, в том числе взаимодействие с океаном. Основной причиной атмосферных движений является неоднородность нагревания различных участков поверхности Земли и атмосферы. Подъем теплого и опускание холодного воздуха на вращающейся Земле сопровождается формированием циркуляционных систем различного масштаба. Совокупность крупномасштабных атмосферных движений получила название общей циркуляции атмосферы. Атмосфера получает тепло, поглощая солнечную радиацию за счет конденсации водяного пара и благодаря теплообмену с подстилающей поверхностью. Поступление скрытой теплоты в атмосферу зависит от подъема влажного воздуха. Так, тропическая зона Тихого океана является мощным источником тепла и влаги для атмосферы. Значительная теплопередача от поверхности океана происходит зимой там, где холодные воздушные массы приходят в районы теплых морских течений. Одним из наиболее крупномасштабных звеньев общей циркуляции атмосферы является циркумполярный вихрь. Его формирование обусловлено наличием в полярной области очагов холода, а в тропической зоне – очагов тепла. Циркумполярное движение и его проявление – западный перенос – представляют устойчивую и характерную особенность общей атмосферной циркуляции. В 1930-е были начаты исследования общей циркуляции атмосферы. Все синоптические процессы (СП) были разделены на элементарные (ЭСП), затем были сведены к трем формам циркуляции: западной (W), восточной (Е) и меридиональной (С). Процессы западной формы (W) характеризуются развитием зональных составляющих циркуляции и быстрым смещением барических образований с запада на восток. При развитии меридиональных форм циркуляции, когда формируются стационарные волны большой амплитуды, наблюдаются процессы форм Е и С. Распределение воздушных течений на земном шаре тесно связано с распределением давления, температуры и характером циклонической деятельности, поэтому в распределении ветра на Земле должна быть определенная зональность. Однако фактические направления ветров зимой и летом отличаются от ветров, предполагаемых зональной схемой. Наиболее четкую зональность имеют ветры в приэкваториальной зоне. В северном полушарии зимой и летом преобладают ветры северо-восточного направления, а в южном – ветры юго-восточного направления, пассаты. Наиболее отчетливо пассаты проявляются над Тихим океаном. Над материками и вблизи них пассаты нарушаются другой системой течений – муссонами, которые возникают из-за циклонической деятельности, связанной с большим перепадом температуры между морем и сушей. Зимой муссон направлен с континента на океан, а летом – с океана на континент. Ярко муссонный перенос воздушных масс наблюдается в прибрежных районах Восточной Азии и, в частности, в Приморьи, Воздушные массы перемещаются как у поверхности Земли, так и на больших высотах от Земли и не только в горизонтальном направлении, но и в вертикальном. Несмотря на то, что вертикальные скорости движения воздуха малы, они играют важную роль в воздухообмене по вертикали, образовании облаков и осадков и других погодных явлений. Есть и другие особенности в распределении вертикальных движений. Анализ синоптических карт показал, что температурные контрасты между полюсом и экватором неравномерно распределены по широте. Наблюдается сравнительно узкая зона, где сконцентрирована значительная часть энергии атмосферной циркуляции. Здесь отмечаются максимальные значения барических градиентов, а, следовательно, и скоростей ветра. Для таких областей было введено понятие высотной фронтальной зоны (ВФЗ), а связанные с ней сильные западные ветры стали называть струйными течениями или струями. Обычно скорость ветра вдоль оси струи превышает 30 м/с, вертикальный градиент скорости ветра превышает 5 м/с на 1 км, а горизонтальный градиент скорости достигает 10 м/с и более, сохраняясь на протяжении около 100 км. ВФЗ занимает большие географические пространства: ее ширина 800–1000 км, а высота 12–15 км при длине 5–10 тыс. км. ВФЗ включает в себя обычно один или несколько атмосферных фронтов и является местом возникновения подвижных фронтальных циклонов и антициклонов, перемещающихся по направлению основного (ведущего) потока. В периоды сильного развития меридиональных процессов ВФЗ как бы «извивается», огибая высотные гребни с севера и ложбины с юга. Общая циркуляция атмосферы представляет собой систему крупномасштабных воздушных течений над земным шаром. Эта система доступна изучению с помощью ежедневных синоптических карт, а также находит отображение на средних многолетних картах для земной поверхности и тропосферы. Область преобладания высокого или низкого давления на средних картах указывает на район, где находится центр действия атмосферы (ЦДА). ЦДА могут быть постоянными (азорский антициклон) и сезонными (сибирский антициклон, алеутская депрессия). Изучение особенностей общей циркуляции атмосферы позволило создать методы для прогнозирования погоды на сроки различной длительности.

Проблема прогноза..

Вопрос о влиянии солнечной активности на погоду имеет практическое значение. Если это влияние существенно, его нужно учитывать в метеорологических прогнозах, значение которых важно для планирования и организации самых различных мероприятий. Прогнозирование текущей погоды на сроки до полусуток основываются на интенсивном подходе с использованием непрерывных наблюдений. При этом анализируются и экстраполируются данные наблюдений метеорологических полей, особенно мезо-масштабных полей облаков и осадков, полученных по данным со спутников и радиолокаторов. Численный (гидродинамический) метод прогноза погоды основан на математическом решении системы полных уравнений гидродинамики и получении прогностических полей давления и температуры на определенных промежутках времени. Вычислительные центры в Москве, Вашингтоне, Токио, Рейдинге (Европейский прогностический центр) используют различные численные схемы развития крупномасштабных атмосферных процессов. Точность численных прогнозов зависит от скорости счета вычислительных систем, количества и качества информации, поступающей от метеостанций. Чем больше данных, тем точнее расчет. Синоптический метод составления прогнозов погоды основан на анализе карт погоды. Сущность этого метода состоит в одновременном обзоре состояния атмосферы на обширной территории, позволяющем определить характер развития атмосферных процессов и дальнейшее наиболее вероятное изменение погодных условий в рассматриваемом районе. Такой обзор осуществляется с помощью карт погоды, на которые наносятся данные метеорологических наблюдений на различных высотах, а также у поверхности Земли, производимых одновременно по единой программе в различных точках земного шара. На основе подробного анализа этих карт синоптик определяет дальнейшие условия развития атмосферных процессов в определенный период времени и рассчитывает характеристики метеопараметров – температуру, ветер, облачность, осадки и т.д. Статистические методы прогноза позволяют по прошлому и настоящему состоянию атмосферы спрогнозировать погоду на определенный будущий период времени, т.е. предсказать изменения различных метеоэлементов в будущем. Часто выбирается комплексный подход – использование сразу нескольких частных методов прогноза одной и той же характеристики состояния атмосферы с целью выбора окончательного варианта прогноза. Поскольку земная атмосфера очень чувствительна к внешним воздействиям, предсказать погоду на длительный срок путем непосредственного расчета движения воздушных масс становится невозможным. Проведенные расчеты показали, что вначале близкие (в рамках гидродинамической модели атмосферы) различные решения затем быстро расходятся и приводят к качественно различным результатам. В процессе гидродинамических вычислений начальные ошибки возрастают вдвое в течение трех – пяти дней. А через две – три недели дальнейшие расчеты могут дать неопределенные результаты.

Основоположником гелиометеорологии считается метеоролог А.В.Дьяков (1900–1989), который в 1960–1980 руководил метеостанцией в поселке Темиртау (Горная Шория, предгория Алтая), считается основоположником гелиометеорологии, поскольку он прогнозировал погоду в районах Казахстана, Западной Сибири, Алтая и Урала на основании своих наблюдений солнечных пятен и даже был награжден за это орденом. Дьяков на несколько месяцев вперед давал долгосрочные прогнозы погоды с учетом активности Солнца. В своих прогнозах он опирался на идеи К.Фламмариона, А.В.Клоссовского (1846–1917) и А.И.Воейкова (1842–1916) о существовании двух атмосферных потоков: холодного (полярного) и теплого (экваториального). Помимо этого он большое внимание уделял работам Элеоноры Лир, разработавшей типы сезонной циркуляции. В результате Дьяков пришел к выводу, что земную атмосферу следует рассматривать как открытую автоколебательную систему, на которую влияет неравномерное солнечное излучение.

Игорь Цыганков приводит календарь Дьякова, в котором отмечены осадки и урожайность зерновых, начиная с 1892. Этим календарем пользуются уже многие годы. В нем приведены наблюдения за выпадением осадков более чем за 100 лет. Календарь применим для Восточной Сибири и Казахстана. Все пятые годы по этому календарю – засушливые. Дьяковскими прогнозами пользовалось и советское правительство. И.Цыганков ведет и свой календарь, начиная с 1955, который вполне совпадает с дьяковским: Например, в 1965 – урожай элитных зерновых на ухоженных полях составил всего 7 центнера с гектара. 1975 – урожайность еще ниже, всего 4 центнера.

Биологические проявления солнечной активности. Солнечная активность и биологические ритмы.

Хорошо известны воздействия ионизующей и проникающей радиации на живые организмы, они успешно применяются в медицине для лечения и профилактики множества заболеваний. Космические воздействия обнаруживаются на многих уровнях биологических структур, начиная от простейших клеток вплоть до нейрофизиологических процессов в мозге человека. А.Л.Чижевский пришел к выводу, что солнечно-биосферные связи являются обще-биологической закономерностью. Он ввел термин «гелиобиология», создал научное направление космической биологии, установил зависимость между цикличностью СА и явлениями в биосфере, показал возможность прогнозирования поведения людей и земных событий в зависимости от ритмов внешней среды. Сейчас эти взгляды развиваются профессором С.Э.Шнолем в институте теоретической и экспериментальной биофизики РАН. Здесь изучаются внешние ритмические вариации факторов среды обитания, которые могут вызывать синхронизацию биоритмов в организмах. Если организм не успевает компенсировать внешние воздействия, то наступает десинхронизация, которая может привести к функциональным нарушениям в организме.

Макроскопические флуктуации и их связь с солнечной активностью СА.

Под руководством Шноля были открыты макрофлуктуации (МФ) – неравномерность протекания химических реакций в физико-химических средах. Это открытие в наши дни привело к новому этапу в развитии биологии – гелиобиологии. После того, как была обнаружена связь с действием космических агентов (СА) на МФ, расширились возможности поиска ритмики в физико-химических явлениях.

Суть МФ можно пояснить так: пусть в определенном объеме водного раствора измеряется скорость протекания некоторой химической реакции. Если последовательно со скоростью раз в несколько минут измерять скорость течения этой реакции, то значения скорости могут существенно отличаться друг от друга, во много раз превышая приборную ошибку. Число прореагировавших частиц, изменяясь во времени, дает ряд дискретных величин. Переход от одной величины к другой происходит самопроизвольно и быстро (за время меньше 0,01 с) и, что самое поразительное, в макрообъеме синхронно даже в двух отдельных, рядом расположенных сосудах. Со временем признаки МФ были обнаружены в самых различных процессах, что привело к выводу, что распространение МФ в среде физико-химических процессов носит всеобщий характер.

Техногенные проявления солнечной активности СА.

Впервые сообщение о вспышке на Солнце было опубликовано в 1859. Одновременно и независимо друг от друга Р.Кэррингтон и Р.Ходжсон визуально наблюдали в белом свете на фоне яркой фотосферы блестящую точку, подобную звезде. В течение нескольких часов спонтанно происходили короткие замыкания в телеграфных проводах, наблюдавшиеся как в США, так и в Европе, вызвавшие ряд пожаров. В обоих полушариях Земли были видны полярные сияния на необычайно низких широтах, вплоть до Рима, Гаваны и Гавайев. Воздействие солнечных вспышек на состояние нижних слоев атмосферы отмечал также Г.Вильд в 1882

Важнейшие техногенные влияния СА:

1. Вызывают ионосферные возмущения.

2. Нарушают радиосвязь.

3. Являются источником радиационной опасности для космонавтов и оборудования космических кораблей.

4. Магнитосферные и ионосферные вариации усиливают электромагнитное излучение на частотах 0,001–10 Гц и влияют на навигацию (компасы и радио), кабельную связь (телекс, телефон), работу линий электропередачи, нефтепроводов и газопроводов.

Обнаружение солнечно-земных связей и воздействие на Землю солнечного излучения.

Еще в летописях древних наблюдателей, фиксировавших происходящие события, встречаются упоминания о возможной зависимости между солнечными и земными явлениями. Земные явления проявлялись в виде грандиозных геофизических катастроф (засухи, наводнения, землетрясения, извержения вулканов, полярные сияния, видимые во всей Европе и даже в тропических странах), смертоносных эпидемических заболеваний и массового голода (неурожаи пшеницы или рост цен на нее на биржах). На основании наблюдений солнечных пятен, полярных сияний и колебаний магнитного поля Земли датский астроном Горребов (середина 18 в.) был одним из первых, кто заподозрил зависимость явлений, наблюдаемых на Земле, от количества пятен на Солнце, т.е. от его активности. Предположение о корпускулярном излучении Солнца в конце 19 в. высказал норвежец К.О.Биркеланд. Многие, исходя из наблюдаемой или подозреваемой периодичности разных явлений в земной атмосфере, старались точно восстановить длину периодов и амплитуду колебаний, а потом уже их причину. Из подобных явлений лучше всего исследована предполагаемая приблизительно 35-летняя периодичность попеременно теплых и сухих и холодных и влажных периодов, на которые впервые указал профессор Э.Брюкнер.

Еще в 1912 М.А.Боголепов в книге Колебания климата и историческая жизнь (голод и война ) писал: «электромагнитное состояние Земли имеет прямое действие на растительную и живую жизнь организмов». Он проанализировал русские летописи, в которых нашли отражение наиболее заметные события, и пришел к выводу, что внезапные изменения климата являются проявлением периодических возмущений всей жизни на земном шаре со всем его физическим и органическим миром, что все это передается в том или ином виде жизни человека и выражается экономическими и политическими бедствиями. В наше время нет той безумной формы голода, какая описывается в летописях далекого прошлого, нет набегов азиатских кочевников, но зато появились банкротства, кризисы производства, экономические катастрофы, которые, в свою очередь, также сильно влияют на политическую жизнь народов всей Земли. Безрезультатно искать периодичность в каком-нибудь одном явлении жизни. Только совокупность всех признаков возмущений на земном шаре может обнаружить закономерность явлений: эпоха наибольших возмущений повторяется трижды в столетие, именно: большая часть 3-го десятилетия и первая половина 4-го, с начала 7-го десятка до половины 8-го, все 90-е годы и начало нового столетия.

Дуглас исследовал годичные кольца на пнях дерева Sequoia gigantea. Поскольку один экземпляр из этих тысячелетних гигантов обладал возрастом около 3200 лет, то оказалось возможным проследить величину прироста годичных колец на огромном промежутке времени. Из этих данных Дуглас сделал вывод о существовании колебаний климата, периоды которых являются числами, кратными 11-летнему циклу солнечной активности. Им был также выделен период в 101 год, возможно, соответствующий вековому циклу СА.

Рост деревьев и число солнечных пятен, по исследованиям живых деревьев Англии, Норвегии, Швеции, Германии и Австрии. Кривая роста деревьев имеет большие максимумы вблизи максимумов солнечных пятен, а также более слабые вторичные максимумы, приблизительно посредине между ними. Оба максимума в пределах одного 11-летнего цикла соответствуют ходу кривых общего выпадения осадков, отличающихся той же периодичностью (Дуглас).

Применение статистики для анализа солнечно-земных связей.

Спектральный анализ временных рядов – важнейший метод изучения свойств различных физических, биологических, метеорологических и прочих процессов в природе, для которых есть количественные характеристики в определенные моменты времени. Его цель – разделение временных рядов на различные частотные составляющие. Для этого наблюдаемый ряд данных разлагается в ряд Фурье. Получаемая зависимость амплитуд фурье-гармоник от частоты называется спектром ряда (процесса), а зависимость квадрата амплитуд называют спектром мощности. Анализ этой зависимости позволяет выявить важнейшие периодические закономерности изучаемого явления, провести сравнение с другими процессами и оценить соответствующие корреляции.

Анализ вариаций земных процессов и проявлений солнечной активности, а также сравнение их между собой показывают, что солнечная активность и обусловленные ею возмущения межпланетной среды проявляются во всех оболочках Земли, включая магнитосферу, все слои атмосферы, литосферу, биосферу и даже техносферу.

Эдвард Кононович

Наблюдайте за солнечной активностью в реальном времени : фото фотосферы, магнитного поля, переходного слоя, короны Солнца и солнечного ветра, влияние на Землю.

Данные SOHO

Данные SDO/HMI

Данные коронографа LASCO

Данные SOHO

EIT обеспечит широкомасштабные снимки короны и переходного участка на солнечном диске до 1.5 солнечного радиуса. Оптическая система концентрируется на спектральных эмиссионных линиях из Fe IX (171 Å), Fe XII (195 Å), Fe XV (284 Å) и He II (304 Å), чтобы обеспечить чувствительный температурный анализ. Диапазон: от 6 × 10 4 K до 3 × 10 6 K

Изображение SOHO EIT 171 Изображение SOHO EIT 195 Изображение SOHO EIT 284 Изображение SOHO EIT 304

Поле зрения телескопа: 45 х 45 угловых минут и 2.6 угловых секунд, что гарантирует 5-кратное пространственное разрешение. EIT собирается глобально зондировать корональную плазму, а также расположенный ниже прохладный турбулентный атмосферный слой. Данные станут основой для наземных обзоров.

Данные SDO/HMI

Исследование солнечных осцилляций (SOI) применяет Измеритель Доплеровского Смещения (MDI), чтобы изучить внутреннюю часть Солнца через фиксирование фотосферных событий звездного колебания. Анализ режимов отображает статические и динамические характеристики участка конвекции и ядра. Если мы разберемся в свойствах, то лучше поймем солнечное магнитное поле и активность поверхности.

Изображение SDO/HMI Continuum

Инструмент отображает звезды на 10242 CCD-камере сквозь цепочку узких спектральных фильтров. Финальные элементы (пара интерферометров) помогают MDI создавать фильтрограммы с шириной полосы FWHM 94 мА. Каждую минуту регистрируют 20 кадров на 5 длинах волн в спектральной линии Ni I 6768. Аппарат определяет интенсивность и скорость континуума с разрешением 4’’ по всему диску.

Изображение SDO/HMI Magnetogram

Чтобы гарантировать постоянный обзор за наиболее длительными режимами (отображают внутреннюю солнечную структуру), тщательно вычисляют набор пространственных средних. Половину своего времени MDI обрабатывает все скорости и интенсивности снимка по нисходящей линии. Высокоскоростная телеметрия (HRT) доступна каждый год по 8 часов в сутки. В период 8-часовых интервалов HRT будет программироваться на другие наблюдения, вроде вычисления поля с более высоким разрешением. Несколько раз в день вставляются поляризаторы для изменения линии видимости магнитного поля. Операции MDI будут планироваться заранее и активироваться в периоды ежесуточных 8-часовых промежутков. Поступающие данные будут обрабатываться немедленно. Сведения поступят в Центр поддержки SOI (Стэнфорд), где каждый год рассматривается 3 терабайта откалиброванных данных. Затем информацию выложат для совместного изучения.

Данные коронографа LASCO

LASCO (широкоугольный спектрометрический коронограф) использовался офисом SWPC для анализа солнечного нагрева и переходных событий, среди которых вспышки, корона и звездный ветер. Полученные изображение обладают огромным значением для модели WSA-Enlil, начавшей функционировать в 2011 году. Это основной инструмент для предсказания высвобождения корональной массы и воздействия солнечного ветра на нашу планету.

Изображение LASCO C2 Изображение LASCO C3

LASCO выступает одним из 11 приборов космического аппарата НАСА SOHO (солнечная и гелиосферная обсерватория). Его запустили в 1995 году из Космического центра Кеннеди. Инструмент представлен тремя коронографами, отображающих 1.1-32 солнечных радиусов. Один радиус охватывает 700000 км. Коронограф – телескоп, препятствующий свету от солнечного диска, что позволяет рассмотреть слабое излучение короны. Коронографы LASCO выступают частью инструментального набора аппарата SOHO, запущенного в 1995 году. SWPC использовали снимки коронографа для прогнозирования погоды. Сейчас действует модель WSA-Enlil.

Солнечный диск ощутимо влияет на планетные процессы. Ведь это главный источник жизни. Поэтому солнечная активность приковывает к себе внимание, так как приводит к трансформации метеорологического состояния Земли (перепады давления, уровень воды и температурные скачки) и психического здоровья человека. Да и наблюдение в реальном времени за магнитными бурями онлайн – это незабываемое представление.